High friction limits of Euler–Navier–Stokes–Korteweg equations for multicomponent models

IF 1.2 4区 数学 Q2 MATHEMATICS, APPLIED Communications in Mathematical Sciences Pub Date : 2023-01-01 DOI:10.4310/cms.2023.v21.n7.a4
Giada Cianfarani Carnevale, Corrado Lattanzio
{"title":"High friction limits of Euler–Navier–Stokes–Korteweg equations for multicomponent models","authors":"Giada Cianfarani Carnevale, Corrado Lattanzio","doi":"10.4310/cms.2023.v21.n7.a4","DOIUrl":null,"url":null,"abstract":"In this paper we analyze the high friction regime for the Navier Stokes Korteweg equations for multicomponent systems. According to the shape of the mixing and friction terms, we shall perform two limits: the high friction limit toward an equilibrium system for the limit densities and the barycentric velocity, and, after an appropriate time scaling, the diffusive relaxation toward parabolic, gradient flow equations for the limit densities. The rigorous justification of these limits is done by means of relative entropy techniques in the framework of weak, finite energy solutions of the relaxation models, rewritten in the enlarged formulation in terms of the drift velocity, toward smooth solutions of the corresponding equilibrium dynamics. Finally, since our estimates are uniform for small viscosity, the results are also valid for the Euler Korteweg multicomponent models, and the corresponding estimates can be obtained by sending the viscosity to zero.","PeriodicalId":50659,"journal":{"name":"Communications in Mathematical Sciences","volume":"110 1","pages":"0"},"PeriodicalIF":1.2000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications in Mathematical Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4310/cms.2023.v21.n7.a4","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper we analyze the high friction regime for the Navier Stokes Korteweg equations for multicomponent systems. According to the shape of the mixing and friction terms, we shall perform two limits: the high friction limit toward an equilibrium system for the limit densities and the barycentric velocity, and, after an appropriate time scaling, the diffusive relaxation toward parabolic, gradient flow equations for the limit densities. The rigorous justification of these limits is done by means of relative entropy techniques in the framework of weak, finite energy solutions of the relaxation models, rewritten in the enlarged formulation in terms of the drift velocity, toward smooth solutions of the corresponding equilibrium dynamics. Finally, since our estimates are uniform for small viscosity, the results are also valid for the Euler Korteweg multicomponent models, and the corresponding estimates can be obtained by sending the viscosity to zero.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
多分量模型的Euler-Navier-Stokes-Korteweg方程的高摩擦极限
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
1.70
自引率
10.00%
发文量
59
审稿时长
6 months
期刊介绍: Covers modern applied mathematics in the fields of modeling, applied and stochastic analyses and numerical computations—on problems that arise in physical, biological, engineering, and financial applications. The journal publishes high-quality, original research articles, reviews, and expository papers.
期刊最新文献
Machine learning methods for autonomous ordinary differential equations A note on the relaxation process in a class of non-equilibrium two-phase flow models Global smooth solutions to the two-dimensional axisymmetric Zeldovich-von Neumann-Döring combustion equations with swirl Stability for the 2D Micropolar equations with partial dissipation near Couette flow IMEX variable step-size Runge-Kutta methods for parabolic integro-differential equations with nonsmooth initial data
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1