{"title":"Numerically solving a nonlinear integral equation when the reciprocal of the solution lies in the integrand","authors":"Indranil Sarkar, Gaurav Singh","doi":"10.1098/rspa.2023.0310","DOIUrl":null,"url":null,"abstract":"The objective of the present work is to develop a numerical method for solving a nonlinear integral equation given by <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" display=\"block\"> <mml:mi>y</mml:mi> <mml:mo stretchy=\"false\">(</mml:mo> <mml:mi>t</mml:mi> <mml:mo stretchy=\"false\">)</mml:mo> <mml:mo>=</mml:mo> <mml:mi>f</mml:mi> <mml:mo stretchy=\"false\">(</mml:mo> <mml:mi>t</mml:mi> <mml:mo stretchy=\"false\">)</mml:mo> <mml:mo>+</mml:mo> <mml:msubsup> <mml:mo>∫</mml:mo> <mml:mrow> <mml:mn>0</mml:mn> </mml:mrow> <mml:mrow> <mml:mn>1</mml:mn> </mml:mrow> </mml:msubsup> <mml:mi>k</mml:mi> <mml:mo stretchy=\"false\">(</mml:mo> <mml:mi>t</mml:mi> <mml:mo>,</mml:mo> <mml:mi>s</mml:mi> <mml:mo stretchy=\"false\">)</mml:mo> <mml:mfrac> <mml:mn>1</mml:mn> <mml:mrow> <mml:msup> <mml:mrow> <mml:mo stretchy=\"false\">[</mml:mo> <mml:mi>y</mml:mi> <mml:mo stretchy=\"false\">(</mml:mo> <mml:mi>s</mml:mi> <mml:mo stretchy=\"false\">)</mml:mo> <mml:mo stretchy=\"false\">]</mml:mo> </mml:mrow> <mml:mrow> <mml:mi>α</mml:mi> </mml:mrow> </mml:msup> </mml:mrow> </mml:mfrac> <mml:mo> </mml:mo> <mml:mtext>d</mml:mtext> <mml:mi>s</mml:mi> <mml:mo>,</mml:mo> </mml:math> where <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mi>y</mml:mi> <mml:mo stretchy=\"false\">(</mml:mo> <mml:mi>t</mml:mi> <mml:mo stretchy=\"false\">)</mml:mo> <mml:mo>∈</mml:mo> <mml:msup> <mml:mi>C</mml:mi> <mml:mn>2</mml:mn> </mml:msup> <mml:mo stretchy=\"false\">[</mml:mo> <mml:mn>0</mml:mn> <mml:mo>,</mml:mo> <mml:mn>1</mml:mn> <mml:mo stretchy=\"false\">]</mml:mo> </mml:math> with <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mi>y</mml:mi> <mml:mo stretchy=\"false\">(</mml:mo> <mml:mi>t</mml:mi> <mml:mo stretchy=\"false\">)</mml:mo> <mml:mo>></mml:mo> <mml:mn>0</mml:mn> </mml:math> , <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mi>f</mml:mi> <mml:mo stretchy=\"false\">(</mml:mo> <mml:mi>t</mml:mi> <mml:mo stretchy=\"false\">)</mml:mo> <mml:mo>∈</mml:mo> <mml:mi>C</mml:mi> <mml:mo stretchy=\"false\">[</mml:mo> <mml:mn>0</mml:mn> <mml:mo>,</mml:mo> <mml:mn>1</mml:mn> <mml:mo stretchy=\"false\">]</mml:mo> </mml:math> with <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mi>f</mml:mi> <mml:mo stretchy=\"false\">(</mml:mo> <mml:mi>t</mml:mi> <mml:mo stretchy=\"false\">)</mml:mo> <mml:mo>≥</mml:mo> <mml:mn>0</mml:mn> </mml:math> , the kernel function <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mi>k</mml:mi> <mml:mo stretchy=\"false\">(</mml:mo> <mml:mi>t</mml:mi> <mml:mo>,</mml:mo> <mml:mi>s</mml:mi> <mml:mo stretchy=\"false\">)</mml:mo> </mml:math> is non-negative and continuous on <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mo stretchy=\"false\">[</mml:mo> <mml:mn>0</mml:mn> <mml:mo>,</mml:mo> <mml:mn>1</mml:mn> <mml:mo stretchy=\"false\">]</mml:mo> <mml:mo>×</mml:mo> <mml:mo stretchy=\"false\">[</mml:mo> <mml:mn>0</mml:mn> <mml:mo>,</mml:mo> <mml:mn>1</mml:mn> <mml:mo stretchy=\"false\">]</mml:mo> </mml:math> and <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mi>α</mml:mi> <mml:mo>></mml:mo> <mml:mn>0</mml:mn> </mml:math> . The existence of a continuous positive solution of this equation is well-established in the literature. However, there is no reported method to solve it numerically for any <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mi>α</mml:mi> <mml:mo>></mml:mo> <mml:mn>0.</mml:mn> </mml:math> To attain the desired objective, the renowned Chebyshev collocation method is used. Having unknown Chebyshev coefficients, this method converts the integral equation into a matrix equation that produces a set of nonlinear algebraic equations. To solve these equations, computationally, the well-established Newton’s method is employed. To validate the effectiveness and precision of the method, various numerical examples with well-defined exact solutions are examined. Obtained numerical solutions confirm the accuracy and validity of the numerical method.","PeriodicalId":20716,"journal":{"name":"Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences","volume":"121 1","pages":"0"},"PeriodicalIF":2.9000,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1098/rspa.2023.0310","RegionNum":3,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
The objective of the present work is to develop a numerical method for solving a nonlinear integral equation given by y(t)=f(t)+∫01k(t,s)1[y(s)]αds, where y(t)∈C2[0,1] with y(t)>0 , f(t)∈C[0,1] with f(t)≥0 , the kernel function k(t,s) is non-negative and continuous on [0,1]×[0,1] and α>0 . The existence of a continuous positive solution of this equation is well-established in the literature. However, there is no reported method to solve it numerically for any α>0. To attain the desired objective, the renowned Chebyshev collocation method is used. Having unknown Chebyshev coefficients, this method converts the integral equation into a matrix equation that produces a set of nonlinear algebraic equations. To solve these equations, computationally, the well-established Newton’s method is employed. To validate the effectiveness and precision of the method, various numerical examples with well-defined exact solutions are examined. Obtained numerical solutions confirm the accuracy and validity of the numerical method.
期刊介绍:
Proceedings A has an illustrious history of publishing pioneering and influential research articles across the entire range of the physical and mathematical sciences. These have included Maxwell"s electromagnetic theory, the Braggs" first account of X-ray crystallography, Dirac"s relativistic theory of the electron, and Watson and Crick"s detailed description of the structure of DNA.