Removal Efficiency of Synthetic Toxic Dye from Water and Waste Water Using Immobilized Green Algae: Bioremediation with Multi Environment Conditions

Q4 Environmental Science Ecological Engineering Environmental Technology Pub Date : 2023-10-12 DOI:10.12912/27197050/174050
Sarab Adeem Juda, Ahed Mohammed Ali, Alla R. Omrain, Zahraa Hussein Obaid, Jasim M. Salman
{"title":"Removal Efficiency of Synthetic Toxic Dye from Water and Waste Water Using Immobilized Green Algae: Bioremediation with Multi Environment Conditions","authors":"Sarab Adeem Juda, Ahed Mohammed Ali, Alla R. Omrain, Zahraa Hussein Obaid, Jasim M. Salman","doi":"10.12912/27197050/174050","DOIUrl":null,"url":null,"abstract":"The synthetic dye industry is a significant source of anthropogenic pollutants emitted into many water bodies across the world. Bioremoval is a substitute for industrial techniques for detoxifying dye-contaminated water. Green algae is an abundant microorganism processing to produce cost-effective, eco-friendly, and high-quality method to bioremediation by immobilization technique. In this present study, The effectiveness of the immobilized green alga Chlorella vulgaris to eliminate Congo red dye in both water and wastewater was assessed through the biodegradation Process under various conditions, including pH, concentration of dye, contact time, and NaCl. The results revealed that the removal increased with increasing contact duration, with the maximum bioremoval percentage occurring at 89.6% at a contact time of 13 days. The removal effectiveness of dye as the number of beads of immobilized C.vulgaris algae grew; the highest removal efficiency was achieved at 7–8 beads of immobilized C.vulgaris algae. There was also an inverse relationship between bioremoval and dye concentration; the maximum removal percentage was 90.1% at 0.1 M dye concentration. The highest removal efficiency was found in the range (91.3–86) at pH 6–7. The bioremoval of Congo red dye was similar in fresh and salinity water (87.2% and 85.3%, respectively). This study observed high removal efficiency for immobilized algae to Congo red under different concentrations of NaCl as an indicator of salinity, ranging between 85.3 and 87.2%.","PeriodicalId":52648,"journal":{"name":"Ecological Engineering Environmental Technology","volume":"47 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-10-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ecological Engineering Environmental Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.12912/27197050/174050","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Environmental Science","Score":null,"Total":0}
引用次数: 0

Abstract

The synthetic dye industry is a significant source of anthropogenic pollutants emitted into many water bodies across the world. Bioremoval is a substitute for industrial techniques for detoxifying dye-contaminated water. Green algae is an abundant microorganism processing to produce cost-effective, eco-friendly, and high-quality method to bioremediation by immobilization technique. In this present study, The effectiveness of the immobilized green alga Chlorella vulgaris to eliminate Congo red dye in both water and wastewater was assessed through the biodegradation Process under various conditions, including pH, concentration of dye, contact time, and NaCl. The results revealed that the removal increased with increasing contact duration, with the maximum bioremoval percentage occurring at 89.6% at a contact time of 13 days. The removal effectiveness of dye as the number of beads of immobilized C.vulgaris algae grew; the highest removal efficiency was achieved at 7–8 beads of immobilized C.vulgaris algae. There was also an inverse relationship between bioremoval and dye concentration; the maximum removal percentage was 90.1% at 0.1 M dye concentration. The highest removal efficiency was found in the range (91.3–86) at pH 6–7. The bioremoval of Congo red dye was similar in fresh and salinity water (87.2% and 85.3%, respectively). This study observed high removal efficiency for immobilized algae to Congo red under different concentrations of NaCl as an indicator of salinity, ranging between 85.3 and 87.2%.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
固定化绿藻对水和废水中合成有毒染料的去除效果:多环境条件下的生物修复
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Ecological Engineering  Environmental Technology
Ecological Engineering Environmental Technology Environmental Science-Environmental Science (miscellaneous)
CiteScore
1.30
自引率
0.00%
发文量
159
审稿时长
8 weeks
期刊最新文献
Synthesis of Mn-Co-Ni Composite Electrode by Anodic and Cathodic Electrodeposition for Indirect Electro-oxidation of Phenol – Optimization of the Removal by Response Surface Methodology Protection Coordination for Wind Farm Integration in the Kosovo Transmission System Towards a Sustainable Energy Future – The Case for Smart Grids in Jordan GIS and Index-Based Methods for Assessing the Human Health Risk and Characterizing the Groundwater Quality of a Coastal Aquifer Impact of Water Stress on the Planktonic Biodiversity of the Youssef Ben Tachafine Dam (Souss Massa, Morocco)
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1