AI-assisted study of auxetic structures

Sergej Grednev, Henrik S. Steude, Stefan Bronder, Oliver Niggemann, Anne Jung
{"title":"AI-assisted study of auxetic structures","authors":"Sergej Grednev, Henrik S. Steude, Stefan Bronder, Oliver Niggemann, Anne Jung","doi":"10.14311/app.2023.42.0032","DOIUrl":null,"url":null,"abstract":"In this study, the viability of using machine learning models to predict stress-strain curves of auxetic structures based on geometry-describing parameters is explored. Given the computational cost and time associated with generating these curves through numerical simulations, a machine learning-based approach promises a more efficient alternative. A range of machine learning models, including Artificial Neural Networks, k-Nearest Neighbors Regression, Support Vector Regression, and XGBoost, is implemented and compared regarding the aptitude to predict stress-strain curves under quasi-static compressive loading. Training data is generated using validated finite element simulations. The performance of these models is rigorously tested on data not seen during training. The Feed-Forward Artificial Neural Network emerged as the most proficient model, achieving a Mean Absolute Percentage Error of 0.367 ± 0.230.","PeriodicalId":7150,"journal":{"name":"Acta Polytechnica CTU Proceedings","volume":"57 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-10-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Polytechnica CTU Proceedings","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.14311/app.2023.42.0032","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this study, the viability of using machine learning models to predict stress-strain curves of auxetic structures based on geometry-describing parameters is explored. Given the computational cost and time associated with generating these curves through numerical simulations, a machine learning-based approach promises a more efficient alternative. A range of machine learning models, including Artificial Neural Networks, k-Nearest Neighbors Regression, Support Vector Regression, and XGBoost, is implemented and compared regarding the aptitude to predict stress-strain curves under quasi-static compressive loading. Training data is generated using validated finite element simulations. The performance of these models is rigorously tested on data not seen during training. The Feed-Forward Artificial Neural Network emerged as the most proficient model, achieving a Mean Absolute Percentage Error of 0.367 ± 0.230.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
人工智能辅助的辅助结构研究
在本研究中,探讨了基于几何描述参数的机器学习模型预测缺失结构应力-应变曲线的可行性。考虑到通过数值模拟生成这些曲线的计算成本和时间,基于机器学习的方法有望成为更有效的替代方案。一系列机器学习模型,包括人工神经网络、k近邻回归、支持向量回归和XGBoost,都被实现并比较了在准静态压缩载荷下预测应力-应变曲线的能力。训练数据是使用经过验证的有限元模拟生成的。这些模型的性能是在训练期间没有看到的数据上严格测试的。前馈人工神经网络是最熟练的模型,平均绝对百分比误差为0.367±0.230。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
0.40
自引率
0.00%
发文量
0
期刊最新文献
Characteristics of fibres based on secondary raw materials and their use in concrete technology Effect of preparation process on purity of tricalcium aluminate Production of concrete pavements using mixed cements The carbonation resistance of concrete on the basis of blended binders containing milled limestone Measurement of asphalt concrete base thickness using ultrasonic pulse echo
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1