Data-Based On-Board Diagnostics for Diesel Engine NOx-Reduction Aftertreatment Systems

Atharva Tandale, Kaushal Jain, Peter H. Meckl
{"title":"Data-Based On-Board Diagnostics for Diesel Engine NOx-Reduction Aftertreatment Systems","authors":"Atharva Tandale, Kaushal Jain, Peter H. Meckl","doi":"10.1115/1.4063473","DOIUrl":null,"url":null,"abstract":"Abstract The NOx conversion efficiency of a combined Selective Catalytic Reduction and Ammonia Slip Catalyst (SCR-ASC) in a Diesel Aftertreatment (AT) system degrades with time. A novel model-informed data-driven On-Board Diagnostic (OBD) binary classification strategy is proposed in this paper to distinguish an End of Useful Life (EUL) SCR-ASC catalyst from Degreened (DG) ones. An optimized, supervised machine learning model was used for the classification with a calibrated single-cell 3-state Continuous Stirred Tank Reactor (CSTR) observer used for state estimation. Percentage of samples classified as EUL (%EUL), w.r.t. classification boundary of 50%, was used as an objective criterion of classification. The method resulted in 87.5% classification accuracy when tested on 8 day-files from 4 trucks (2 day-files per truck; 1 DG and 1 EUL) operating in real-world on-road conditions. Each day-file had ~86,000 samples of data. Mileage of the same truck was used as ground truth for classification. However, mileage across different trucks cannot be used for classification since the operating conditions would vary across trucks.","PeriodicalId":327130,"journal":{"name":"ASME Letters in Dynamic Systems and Control","volume":"54 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-09-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ASME Letters in Dynamic Systems and Control","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/1.4063473","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Abstract The NOx conversion efficiency of a combined Selective Catalytic Reduction and Ammonia Slip Catalyst (SCR-ASC) in a Diesel Aftertreatment (AT) system degrades with time. A novel model-informed data-driven On-Board Diagnostic (OBD) binary classification strategy is proposed in this paper to distinguish an End of Useful Life (EUL) SCR-ASC catalyst from Degreened (DG) ones. An optimized, supervised machine learning model was used for the classification with a calibrated single-cell 3-state Continuous Stirred Tank Reactor (CSTR) observer used for state estimation. Percentage of samples classified as EUL (%EUL), w.r.t. classification boundary of 50%, was used as an objective criterion of classification. The method resulted in 87.5% classification accuracy when tested on 8 day-files from 4 trucks (2 day-files per truck; 1 DG and 1 EUL) operating in real-world on-road conditions. Each day-file had ~86,000 samples of data. Mileage of the same truck was used as ground truth for classification. However, mileage across different trucks cannot be used for classification since the operating conditions would vary across trucks.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于数据的柴油机减氮后处理系统车载诊断
柴油后处理(AT)系统中选择性催化还原与氨滑催化剂(SCR-ASC)的NOx转化效率随时间而降低。本文提出了一种基于模型的数据驱动车载诊断(OBD)二元分类策略,用于区分使用寿命终止(EUL) SCR-ASC催化剂和脱脂(DG)催化剂。使用经过优化的监督机器学习模型进行分类,并使用校准的单细胞3状态连续搅拌槽反应器(CSTR)观测器进行状态估计。以被分类为EUL的样本百分比(%EUL), w.r.t.分类边界为50%作为分类的客观标准。该方法对4辆卡车的8个日档案进行了测试,准确率为87.5%(每辆卡车2个日档案;1个DG和1个EUL)在真实的道路条件下运行。每个日文件有大约86,000个数据样本。同一辆卡车的行驶里程作为分类的真实值。但是,不同卡车的行驶里程不能用于分类,因为不同卡车的运行条件会有所不同。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Some Results on the Properties of Discrete-Time LTI State-Space Systems Using Constrained Convex Optimization in Parameter Estimation of Process Dynamics with Dead Time Utilisation of Manipulator Redundancy for Torque Reduction During Force Interaction Adaptive Tracking Control of Robotic Manipulator Subjected to Actuator Saturation and Partial Loss of Effectiveness Utilisation of Manipulator Redundancy for Torque Reduction During Force Interaction
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1