Likun Wang, Zi Wang, Peter Kendall, Kevin Gumma, Alison Turner, Svetan Ratchev
{"title":"Digital-twin deep dynamic camera position optimisation for the V-STARS photogrammetry system based on 3D reconstruction","authors":"Likun Wang, Zi Wang, Peter Kendall, Kevin Gumma, Alison Turner, Svetan Ratchev","doi":"10.1080/00207543.2023.2252108","DOIUrl":null,"url":null,"abstract":"Photogrammetry systems are widely used in industrial manufacturing applications as an assistance measurement tool. Not only does it provide high-precision feedback for assembly process inspection and product quality assessment, but also it can improve the flexibility and robustness of manufacturing systems and production lines. However, with growing global competition and demands, companies are forced to enhance production efficiency, shorten production lifecycle and increase product variety by incorporating reconfigurable factory design that can meet challenging timeline and requirements. Although dynamic facility layout is widely investigated, the position selection for the photogrammetry system in dynamic manufacturing environment is usually overlooked. In this paper, dynamic layout of the V-STARS photogrammetry system is investigated and optimised in a digital-twin environment using deep reinforcement learning. The learning objectives are derived from the field of view (FoV) evaluation from point clouds 3D reconstruction, and collision detection from the digital twin simulated in Visual Components. The application feasibility of the proposed dynamic layout optimisation of the V-STARS photogrammetry system is verified with a real world industrial application.","PeriodicalId":14307,"journal":{"name":"International Journal of Production Research","volume":"27 1","pages":"0"},"PeriodicalIF":7.0000,"publicationDate":"2023-09-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Production Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/00207543.2023.2252108","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, INDUSTRIAL","Score":null,"Total":0}
引用次数: 0
Abstract
Photogrammetry systems are widely used in industrial manufacturing applications as an assistance measurement tool. Not only does it provide high-precision feedback for assembly process inspection and product quality assessment, but also it can improve the flexibility and robustness of manufacturing systems and production lines. However, with growing global competition and demands, companies are forced to enhance production efficiency, shorten production lifecycle and increase product variety by incorporating reconfigurable factory design that can meet challenging timeline and requirements. Although dynamic facility layout is widely investigated, the position selection for the photogrammetry system in dynamic manufacturing environment is usually overlooked. In this paper, dynamic layout of the V-STARS photogrammetry system is investigated and optimised in a digital-twin environment using deep reinforcement learning. The learning objectives are derived from the field of view (FoV) evaluation from point clouds 3D reconstruction, and collision detection from the digital twin simulated in Visual Components. The application feasibility of the proposed dynamic layout optimisation of the V-STARS photogrammetry system is verified with a real world industrial application.
期刊介绍:
The International Journal of Production Research (IJPR), published since 1961, is a well-established, highly successful and leading journal reporting manufacturing, production and operations management research.
IJPR is published 24 times a year and includes papers on innovation management, design of products, manufacturing processes, production and logistics systems. Production economics, the essential behaviour of production resources and systems as well as the complex decision problems that arise in design, management and control of production and logistics systems are considered.
IJPR is a journal for researchers and professors in mechanical engineering, industrial and systems engineering, operations research and management science, and business. It is also an informative reference for industrial managers looking to improve the efficiency and effectiveness of their production systems.