Kantheepan Yogeeswaran, Qian Chen, Borja García de Soto
{"title":"Utilizing augmented reality for the assembly and disassembly of panelized construction","authors":"Kantheepan Yogeeswaran, Qian Chen, Borja García de Soto","doi":"10.36680/j.itcon.2023.030","DOIUrl":null,"url":null,"abstract":"Prefabricated construction allows for efficient resource usage while creating higher-quality products that can be assembled on-site within a short time. While this translates to significant benefits for the overall construction, challenges arise from an increased demand for trained prefabrication assembly workers. As prefabrication calls for skills differing from traditional construction, the local labor force can be negatively affected to impede the successful uptake of prefabricated construction. Upskilling the local workforce to take on prefabrication assembly and potential disassembly can solve this problem. This is more relevant to remote construction projects as they stand to gain more from prefabricated construction. This study presents two workflows for creating Augmented Reality (AR) solutions. The AR solutions are aimed to help workers transition between traditional and prefabrication assembly in a panelized construction project. They are: (1) using QR codes to identify a panel’s intended location and construction sequence and (2) using predefined markers to show required equipment and on-site assembly procedures. The solutions are delivered through smartphones, which are readily available and provide a cost-effective medium. Furthermore, developed workflows present an opportunity to implement Design for Disassembly (DfD) concepts in a project. The proposed workflows show the potential to substantially help communicate to the workers the instructions on both the panel assembly and disassembly activities and upskill the local workforce to support the transition to prefabrication assembly in construction projects.","PeriodicalId":51624,"journal":{"name":"Journal of Information Technology in Construction","volume":"31 1","pages":"0"},"PeriodicalIF":3.6000,"publicationDate":"2023-09-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Information Technology in Construction","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.36680/j.itcon.2023.030","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
引用次数: 1
Abstract
Prefabricated construction allows for efficient resource usage while creating higher-quality products that can be assembled on-site within a short time. While this translates to significant benefits for the overall construction, challenges arise from an increased demand for trained prefabrication assembly workers. As prefabrication calls for skills differing from traditional construction, the local labor force can be negatively affected to impede the successful uptake of prefabricated construction. Upskilling the local workforce to take on prefabrication assembly and potential disassembly can solve this problem. This is more relevant to remote construction projects as they stand to gain more from prefabricated construction. This study presents two workflows for creating Augmented Reality (AR) solutions. The AR solutions are aimed to help workers transition between traditional and prefabrication assembly in a panelized construction project. They are: (1) using QR codes to identify a panel’s intended location and construction sequence and (2) using predefined markers to show required equipment and on-site assembly procedures. The solutions are delivered through smartphones, which are readily available and provide a cost-effective medium. Furthermore, developed workflows present an opportunity to implement Design for Disassembly (DfD) concepts in a project. The proposed workflows show the potential to substantially help communicate to the workers the instructions on both the panel assembly and disassembly activities and upskill the local workforce to support the transition to prefabrication assembly in construction projects.