Edoardo Fibbi, Domenico Perrotta, Francesca Torti, Stefan Van Aelst, Tim Verdonck
{"title":"Co-clustering contaminated data: a robust model-based approach","authors":"Edoardo Fibbi, Domenico Perrotta, Francesca Torti, Stefan Van Aelst, Tim Verdonck","doi":"10.1007/s11634-023-00549-3","DOIUrl":null,"url":null,"abstract":"<div><p>The exploration and analysis of large high-dimensional data sets calls for well-thought techniques to extract the salient information from the data, such as co-clustering. Latent block models cast co-clustering in a probabilistic framework that extends finite mixture models to the two-way setting. Real-world data sets often contain anomalies which could be of interest <i>per se</i> and may make the results provided by standard, non-robust procedures unreliable. Also estimation of latent block models can be heavily affected by contaminated data. We propose an algorithm to compute robust estimates for latent block models. Experiments on both simulated and real data show that our method is able to resist high levels of contamination and can provide additional insight into the data by highlighting possible anomalies.</p></div>","PeriodicalId":49270,"journal":{"name":"Advances in Data Analysis and Classification","volume":"18 1","pages":"121 - 161"},"PeriodicalIF":1.4000,"publicationDate":"2023-09-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s11634-023-00549-3.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Data Analysis and Classification","FirstCategoryId":"94","ListUrlMain":"https://link.springer.com/article/10.1007/s11634-023-00549-3","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 0
Abstract
The exploration and analysis of large high-dimensional data sets calls for well-thought techniques to extract the salient information from the data, such as co-clustering. Latent block models cast co-clustering in a probabilistic framework that extends finite mixture models to the two-way setting. Real-world data sets often contain anomalies which could be of interest per se and may make the results provided by standard, non-robust procedures unreliable. Also estimation of latent block models can be heavily affected by contaminated data. We propose an algorithm to compute robust estimates for latent block models. Experiments on both simulated and real data show that our method is able to resist high levels of contamination and can provide additional insight into the data by highlighting possible anomalies.
期刊介绍:
The international journal Advances in Data Analysis and Classification (ADAC) is designed as a forum for high standard publications on research and applications concerning the extraction of knowable aspects from many types of data. It publishes articles on such topics as structural, quantitative, or statistical approaches for the analysis of data; advances in classification, clustering, and pattern recognition methods; strategies for modeling complex data and mining large data sets; methods for the extraction of knowledge from data, and applications of advanced methods in specific domains of practice. Articles illustrate how new domain-specific knowledge can be made available from data by skillful use of data analysis methods. The journal also publishes survey papers that outline, and illuminate the basic ideas and techniques of special approaches.