{"title":"Real-Time Detection and Identification of Suspects in Forensic Imagery Using Advanced YOLOv8 Object Recognition Models","authors":"Serkan Karakuş, Mustafa Kaya, Seda Arslan Tuncer","doi":"10.18280/ts.400521","DOIUrl":null,"url":null,"abstract":"Rapid advancements in artificial intelligence, machine learning, deep learning, coupled with easy access to high-capacity processing hardware, expansive organized datasets, and the evolution of artificial intelligence algorithms, have extensively influenced numerous fields. Digital Forensics is one such discipline where the application of artificial intelligence has been significantly amplified in recent years. The analysis of extensive image and video files derived from forensic evidence presents challenges in terms of time efficiency and accuracy. To surmount these challenges, artificial intelligence models can be employed to perform identification and classification processes on these data, thus expediting the resolution of forensic cases with enhanced precision. In the current study, state-of-the-art pre-trained YOLOv8 object recognition models - nano, small, medium, large, and extra-large - were utilized. These models were trained on the Wider-Face dataset with the objective of identifying suspects from images and videos sourced from digital materials in the field of digital forensics. The models achieved mean Average Precision (mAP) values of 97.513%, 98.569%, 98.763%, 98.775%, and 99.032% respectively. The YOLOv8 architecture demonstrated superior performance, outperforming the YOLOv5 architecture by a margin of 7.1% to 8.8%. To aid digital forensic experts in the detection and identification of suspicious individuals, a desktop application capable of real-time image analysis was developed.","PeriodicalId":49430,"journal":{"name":"Traitement Du Signal","volume":"17 1","pages":"0"},"PeriodicalIF":1.2000,"publicationDate":"2023-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Traitement Du Signal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18280/ts.400521","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
Rapid advancements in artificial intelligence, machine learning, deep learning, coupled with easy access to high-capacity processing hardware, expansive organized datasets, and the evolution of artificial intelligence algorithms, have extensively influenced numerous fields. Digital Forensics is one such discipline where the application of artificial intelligence has been significantly amplified in recent years. The analysis of extensive image and video files derived from forensic evidence presents challenges in terms of time efficiency and accuracy. To surmount these challenges, artificial intelligence models can be employed to perform identification and classification processes on these data, thus expediting the resolution of forensic cases with enhanced precision. In the current study, state-of-the-art pre-trained YOLOv8 object recognition models - nano, small, medium, large, and extra-large - were utilized. These models were trained on the Wider-Face dataset with the objective of identifying suspects from images and videos sourced from digital materials in the field of digital forensics. The models achieved mean Average Precision (mAP) values of 97.513%, 98.569%, 98.763%, 98.775%, and 99.032% respectively. The YOLOv8 architecture demonstrated superior performance, outperforming the YOLOv5 architecture by a margin of 7.1% to 8.8%. To aid digital forensic experts in the detection and identification of suspicious individuals, a desktop application capable of real-time image analysis was developed.
期刊介绍:
The TS provides rapid dissemination of original research in the field of signal processing, imaging and visioning. Since its founding in 1984, the journal has published articles that present original research results of a fundamental, methodological or applied nature. The editorial board welcomes articles on the latest and most promising results of academic research, including both theoretical results and case studies.
The TS welcomes original research papers, technical notes and review articles on various disciplines, including but not limited to:
Signal processing
Imaging
Visioning
Control
Filtering
Compression
Data transmission
Noise reduction
Deconvolution
Prediction
Identification
Classification.