{"title":"Numerical algorithm with fifth‐order accuracy for axisymmetric Laplace equation with linear boundary value problem","authors":"Hu Li, Jin Huang","doi":"10.1002/num.23079","DOIUrl":null,"url":null,"abstract":"Abstract In order to obtain the numerical solutions of the axisymmetric Laplace equation with linear boundary problem in three dimensions, we have developed a quadrature method to solve the problem. Firstly, the problem can be transformed to a integral equation with weakly singular operator by using the Green's formula. Secondly, A quadrature method is constructed by combing the mid‐rectangle formula with a singular integral formula to solve the integral equation, which has the accuracy of and low computational complexity. Thirdly, the convergence of the numerical solutions is proved based on the theory of compact operators and the single parameter asymptotic expansion of errors with odd power is got. From the expansion, we construct an extrapolation algorithm (EA) to further improve the accuracy of the numerical solutions. After one extrapolation, the accuracy of the numerical solutions can reach the accuracy of . Finally, two numerical examples are presented to demonstrate the efficiency of the method.","PeriodicalId":19443,"journal":{"name":"Numerical Methods for Partial Differential Equations","volume":"684 ","pages":"0"},"PeriodicalIF":2.1000,"publicationDate":"2023-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Numerical Methods for Partial Differential Equations","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/num.23079","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
Abstract In order to obtain the numerical solutions of the axisymmetric Laplace equation with linear boundary problem in three dimensions, we have developed a quadrature method to solve the problem. Firstly, the problem can be transformed to a integral equation with weakly singular operator by using the Green's formula. Secondly, A quadrature method is constructed by combing the mid‐rectangle formula with a singular integral formula to solve the integral equation, which has the accuracy of and low computational complexity. Thirdly, the convergence of the numerical solutions is proved based on the theory of compact operators and the single parameter asymptotic expansion of errors with odd power is got. From the expansion, we construct an extrapolation algorithm (EA) to further improve the accuracy of the numerical solutions. After one extrapolation, the accuracy of the numerical solutions can reach the accuracy of . Finally, two numerical examples are presented to demonstrate the efficiency of the method.
期刊介绍:
An international journal that aims to cover research into the development and analysis of new methods for the numerical solution of partial differential equations, it is intended that it be readily readable by and directed to a broad spectrum of researchers into numerical methods for partial differential equations throughout science and engineering. The numerical methods and techniques themselves are emphasized rather than the specific applications. The Journal seeks to be interdisciplinary, while retaining the common thread of applied numerical analysis.