David Marek, Daniel Eberl, Khaled Otba, Ruth Walter, Andreas Kortekamp, Wilfried Schwab, Ludwig Niessen
{"title":"Detection of Esca-associated fungi in grapevine trunks using loop-mediated isothermal amplification (LAMP) assays","authors":"David Marek, Daniel Eberl, Khaled Otba, Ruth Walter, Andreas Kortekamp, Wilfried Schwab, Ludwig Niessen","doi":"10.1111/aab.12878","DOIUrl":null,"url":null,"abstract":"<p>Esca is a grapevine trunk disease (GTD) that is caused by filamentous fungi. It is responsible for considerable economic losses in viniculture on a global scale. Despite many unknown factors contributing to the development of symptoms in affected plants, <i>Phaeoacremonium minimum</i> (PMI), <i>Phaeomoniella chlamydospora</i> (PCH) and <i>Fomitiporia mediterranea</i> (FMED) are generally considered as the main causative fungal species. Early detection and specific identification of these pathogens therefore play an important role in disease control and evaluation of suitable countermeasures. In this study, loop-mediated isothermal amplification (LAMP) assays were developed for each of the three pathogens. A genome-based approach was applied for detection and selection of unique target DNA sequences. The designed primer sets showed overall good specificities, with some observed cross-reactions towards closely related <i>Phaeoacremonium</i> species for the PMI primer set. The developed assays had detection limits of 100 pg (FMED, PMI) and 1 pg (PCH) per reaction (corresponding to 1460 [FMED]; 1950 [PMI]; 342 [PCH] genome copies per reaction). The application of the assays to field samples was demonstrated by testing individual infected grapevine trunks from two European viticultural regions using crude DNA obtained in a rapid sample preparation step. LAMP assay results matched those of PCR following a conventional DNA extraction protocol. The study showed that LAMP-based rapid molecular detection of major Esca agents can serve as a useful tool for further research and surveillance of a highly devastating grapevine disease. The application of computer-based whole genome comparison between target and non-target species for the identification of unique target sequences as the basis for LAMP (or PCR) primer design was demonstrated to be a useful approach in species for which scarce sequence information is available. Moreover, the developed method for rapid DNA preparation from grapevine trunks may potentially be adapted to the DNA-based detection also of other fungal species that cause grapevine trunk diseases.</p>","PeriodicalId":7977,"journal":{"name":"Annals of Applied Biology","volume":"184 2","pages":"226-237"},"PeriodicalIF":2.2000,"publicationDate":"2023-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/aab.12878","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of Applied Biology","FirstCategoryId":"97","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/aab.12878","RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"AGRICULTURE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Esca is a grapevine trunk disease (GTD) that is caused by filamentous fungi. It is responsible for considerable economic losses in viniculture on a global scale. Despite many unknown factors contributing to the development of symptoms in affected plants, Phaeoacremonium minimum (PMI), Phaeomoniella chlamydospora (PCH) and Fomitiporia mediterranea (FMED) are generally considered as the main causative fungal species. Early detection and specific identification of these pathogens therefore play an important role in disease control and evaluation of suitable countermeasures. In this study, loop-mediated isothermal amplification (LAMP) assays were developed for each of the three pathogens. A genome-based approach was applied for detection and selection of unique target DNA sequences. The designed primer sets showed overall good specificities, with some observed cross-reactions towards closely related Phaeoacremonium species for the PMI primer set. The developed assays had detection limits of 100 pg (FMED, PMI) and 1 pg (PCH) per reaction (corresponding to 1460 [FMED]; 1950 [PMI]; 342 [PCH] genome copies per reaction). The application of the assays to field samples was demonstrated by testing individual infected grapevine trunks from two European viticultural regions using crude DNA obtained in a rapid sample preparation step. LAMP assay results matched those of PCR following a conventional DNA extraction protocol. The study showed that LAMP-based rapid molecular detection of major Esca agents can serve as a useful tool for further research and surveillance of a highly devastating grapevine disease. The application of computer-based whole genome comparison between target and non-target species for the identification of unique target sequences as the basis for LAMP (or PCR) primer design was demonstrated to be a useful approach in species for which scarce sequence information is available. Moreover, the developed method for rapid DNA preparation from grapevine trunks may potentially be adapted to the DNA-based detection also of other fungal species that cause grapevine trunk diseases.
期刊介绍:
Annals of Applied Biology is an international journal sponsored by the Association of Applied Biologists. The journal publishes original research papers on all aspects of applied research on crop production, crop protection and the cropping ecosystem. The journal is published both online and in six printed issues per year.
Annals papers must contribute substantially to the advancement of knowledge and may, among others, encompass the scientific disciplines of:
Agronomy
Agrometeorology
Agrienvironmental sciences
Applied genomics
Applied metabolomics
Applied proteomics
Biodiversity
Biological control
Climate change
Crop ecology
Entomology
Genetic manipulation
Molecular biology
Mycology
Nematology
Pests
Plant pathology
Plant breeding & genetics
Plant physiology
Post harvest biology
Soil science
Statistics
Virology
Weed biology
Annals also welcomes reviews of interest in these subject areas. Reviews should be critical surveys of the field and offer new insights. All papers are subject to peer review. Papers must usually contribute substantially to the advancement of knowledge in applied biology but short papers discussing techniques or substantiated results, and reviews of current knowledge of interest to applied biologists will be considered for publication. Papers or reviews must not be offered to any other journal for prior or simultaneous publication and normally average seven printed pages.