Ruvita Faurina, M. Jumli Gazali, Icha Dwi Aprilia Herani
{"title":"Implementasi Deep Feed-Forward Neural Network pada Perancangan Chatbot Berbasis Web di UPPIK RSUD M. YUNUS","authors":"Ruvita Faurina, M. Jumli Gazali, Icha Dwi Aprilia Herani","doi":"10.34010/komputika.v12i2.8914","DOIUrl":null,"url":null,"abstract":"UPPIK (Unit Pengaduan Pelanggan Informasi dan Konseling) di RSUD M. Yunus memiliki tugas penting dalam melayani pengunjung yang datang ke rumah sakit. Namun, sering kali pengunjung mengeluh tentang pelayanan UPPIK karena jam kerja yang terbatas, sehingga tidak selalu ada staf/petugas yang tersedia untuk memberikan informasi yang dibutuhkan pengunjung. Selain itu, pandemi Covid-19 yang belum mereda mengharuskan masyarakat untuk menjaga jarak dan mengurangi interaksi antar individu. Sebagai solusi atas masalah ini, sebuah chatbot otomatis telah dikembangkan untuk memberikan layanan seolah-olah pengunjung berbicara langsung dengan staf/petugas tanpa ada batasan waktu. Penelitian ini menggunakan algoritma Deep Feed-Forward Neural Network. Dataset yang digunakan adalah kumpulan data pertanyaan jawaban yang dikumpulkan melalui observasi langsung di UPPIK, yang terdiri dari 1464 pasangan data. Akurasi terbaik diperoleh dengan membagi dataset menjadi 80% data training (1.185 data), 10% data testing (147 data), dan 10% data validasi (132 data) dengan epoch 300, yang menghasilkan akurasi sebesar 91,98%. Evaluasi terhadap hasil ini menunjukkan nilai precision sebesar 0,99, recall sebesar 0,98, dan f1-score sebesar 0,99.","PeriodicalId":52813,"journal":{"name":"Komputika","volume":"366 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Komputika","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.34010/komputika.v12i2.8914","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
UPPIK (Unit Pengaduan Pelanggan Informasi dan Konseling) di RSUD M. Yunus memiliki tugas penting dalam melayani pengunjung yang datang ke rumah sakit. Namun, sering kali pengunjung mengeluh tentang pelayanan UPPIK karena jam kerja yang terbatas, sehingga tidak selalu ada staf/petugas yang tersedia untuk memberikan informasi yang dibutuhkan pengunjung. Selain itu, pandemi Covid-19 yang belum mereda mengharuskan masyarakat untuk menjaga jarak dan mengurangi interaksi antar individu. Sebagai solusi atas masalah ini, sebuah chatbot otomatis telah dikembangkan untuk memberikan layanan seolah-olah pengunjung berbicara langsung dengan staf/petugas tanpa ada batasan waktu. Penelitian ini menggunakan algoritma Deep Feed-Forward Neural Network. Dataset yang digunakan adalah kumpulan data pertanyaan jawaban yang dikumpulkan melalui observasi langsung di UPPIK, yang terdiri dari 1464 pasangan data. Akurasi terbaik diperoleh dengan membagi dataset menjadi 80% data training (1.185 data), 10% data testing (147 data), dan 10% data validasi (132 data) dengan epoch 300, yang menghasilkan akurasi sebesar 91,98%. Evaluasi terhadap hasil ini menunjukkan nilai precision sebesar 0,99, recall sebesar 0,98, dan f1-score sebesar 0,99.