{"title":"A second-order model of small-strain incompatible elasticity","authors":"Samuel Amstutz, Nicolas van Goethem","doi":"10.1177/10812865231193427","DOIUrl":null,"url":null,"abstract":"This work deals with the modeling of solid continua undergoing incompatible deformations due to the presence of microscopic defects like dislocations. Our approach relies on a geometrical description of the medium by the strain tensor and the representation of internal efforts using zeroth- and second-order strain gradients in an infinitesimal framework. At the same time, energetic arguments allow to monitor the corresponding moduli. We provide mathematical and numerical results to support these ideas in the framework of isotropic constitutive laws.","PeriodicalId":49854,"journal":{"name":"Mathematics and Mechanics of Solids","volume":"28 1","pages":"0"},"PeriodicalIF":1.7000,"publicationDate":"2023-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematics and Mechanics of Solids","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1177/10812865231193427","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
This work deals with the modeling of solid continua undergoing incompatible deformations due to the presence of microscopic defects like dislocations. Our approach relies on a geometrical description of the medium by the strain tensor and the representation of internal efforts using zeroth- and second-order strain gradients in an infinitesimal framework. At the same time, energetic arguments allow to monitor the corresponding moduli. We provide mathematical and numerical results to support these ideas in the framework of isotropic constitutive laws.
期刊介绍:
Mathematics and Mechanics of Solids is an international peer-reviewed journal that publishes the highest quality original innovative research in solid mechanics and materials science.
The central aim of MMS is to publish original, well-written and self-contained research that elucidates the mechanical behaviour of solids with particular emphasis on mathematical principles. This journal is a member of the Committee on Publication Ethics (COPE).