Early-Stage Dislocation Structures inside the Dislocation Channels of Face-Centered-Cubic Metals with Point Defect Clusters

IF 1.2 4区 材料科学 Q4 MATERIALS SCIENCE, MULTIDISCIPLINARY Materials Transactions Pub Date : 2023-09-01 DOI:10.2320/matertrans.mt-m2023032
Kazushige Tokuno, Masatoshi Mitsuhara, Masahiro Hagino
{"title":"Early-Stage Dislocation Structures inside the Dislocation Channels of Face-Centered-Cubic Metals with Point Defect Clusters","authors":"Kazushige Tokuno, Masatoshi Mitsuhara, Masahiro Hagino","doi":"10.2320/matertrans.mt-m2023032","DOIUrl":null,"url":null,"abstract":"Early-stage dislocation structures inside dislocation channels of rapid-cooled and tensile-deformed aluminum single crystals were investigated by using the bright field imaging mode in a scanning transmission electron microscope (STEM-BF). Inside dislocation channels, arrays of the prismatic dislocation loops originated from dislocations of the primary slip system, i.e., (1 1 1)[1 0 1], were mainly formed. Dislocations of the primary coplanar slip systems such as (1 1 1)[0 1 1] and (1 1 1)[1 1 0] were activated owing to internal stresses caused by the primary dislocations pile-up inside the cleared channels. The activated primary coplanar dislocations left the dislocation loops elongating along the edge dislocation directions behind them. Inter-dislocation-loop interactions occur especially at the arrays of the prismatic dislocation loops originated from dislocations of the primary slip systems and produce “butterfly shape” dislocation loops. As the “butterfly shape” dislocation loops have “sessile” junctions, they should act as “obstacles” against the following multiplications and glides of the dislocations. When the interactions proceed, “tangled structures” would be formed around the arrays of the prismatic dislocation loops originated from dislocations of the primary slip system.","PeriodicalId":18402,"journal":{"name":"Materials Transactions","volume":"85 1","pages":"0"},"PeriodicalIF":1.2000,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Transactions","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2320/matertrans.mt-m2023032","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Early-stage dislocation structures inside dislocation channels of rapid-cooled and tensile-deformed aluminum single crystals were investigated by using the bright field imaging mode in a scanning transmission electron microscope (STEM-BF). Inside dislocation channels, arrays of the prismatic dislocation loops originated from dislocations of the primary slip system, i.e., (1 1 1)[1 0 1], were mainly formed. Dislocations of the primary coplanar slip systems such as (1 1 1)[0 1 1] and (1 1 1)[1 1 0] were activated owing to internal stresses caused by the primary dislocations pile-up inside the cleared channels. The activated primary coplanar dislocations left the dislocation loops elongating along the edge dislocation directions behind them. Inter-dislocation-loop interactions occur especially at the arrays of the prismatic dislocation loops originated from dislocations of the primary slip systems and produce “butterfly shape” dislocation loops. As the “butterfly shape” dislocation loops have “sessile” junctions, they should act as “obstacles” against the following multiplications and glides of the dislocations. When the interactions proceed, “tangled structures” would be formed around the arrays of the prismatic dislocation loops originated from dislocations of the primary slip system.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
具有点缺陷团簇的面心立方金属位错通道内的早期位错结构
利用扫描透射电子显微镜(tem - bf)的亮场成像模式,研究了快速冷却和拉伸变形铝单晶位错通道内的早期位错结构。位错通道内主要形成源自原生滑移系统位错的棱柱位错环阵列,即(1 1 1)[1 0 1]。(1 1 1)[0 1 1]和(1 1 1)[1 1 1]等初级共面滑移体系的位错被激活是由于清除通道内堆积的初级位错所引起的内应力。激活的初级共面位错使位错环沿着其后面的边缘位错方向拉长。位错-位错环之间的相互作用主要发生在原始滑移体系位错形成的棱柱位错环的阵列上,形成“蝴蝶形”位错环。由于“蝴蝶形”的位错环具有“坚固”的连接点,它们应该作为“障碍”来阻止接下来的位错增殖和滑动。当相互作用进行时,原始滑移系统的位错引起的棱柱位错环阵列周围会形成“缠结结构”。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Materials Transactions
Materials Transactions 工程技术-材料科学:综合
CiteScore
2.00
自引率
25.00%
发文量
205
审稿时长
2.7 months
期刊介绍: Information not localized
期刊最新文献
Fabrication and Electrical Properties of PSZT Piezoelectric Ceramic Ring for Ultrasonic Welding Application Measurement of True Stress–True Strain Curve up to Large Strain Extent at Elevated Temperatures in Ti–6Al–4V Alloy with Image Analysis Tensile Test Method Reduction of Surface Crack by Modified Molten Metal Pouring Method on Al–Mg Alloy Strips Produced by Twin-Roll Casting Phase Equilibria in Aluminium–Ruthenium–Silicon System near 1200 Kelvin Volatile Separation and Recovery of Iridium from Oxygen Evolution Electrodes Using Calcium Oxide
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1