Yang Liu, Jian Song, Robert Burridge, Jianliang Qian
{"title":"A Fast Butterfly-Compressed Hadamard–Babich Integrator for High-Frequency Helmholtz Equations in Inhomogeneous Media with Arbitrary Sources","authors":"Yang Liu, Jian Song, Robert Burridge, Jianliang Qian","doi":"10.1137/21m1450422","DOIUrl":null,"url":null,"abstract":"We present a butterfly-compressed representation of the Hadamard–Babich (HB) ansatz for the Green’s function of the high-frequency Helmholtz equation in smooth inhomogeneous media. For a computational domain discretized with discretization cells, the proposed algorithm first solves and tabulates the phase and HB coefficients via eikonal and transport equations with observation points and point sources located at the Chebyshev nodes using a set of much coarser computation grids, and then butterfly compresses the resulting HB interactions from all cell centers to each other. The overall CPU time and memory requirement scale as for any bounded two-dimensional (2D) domains with arbitrary excitation sources. A direct extension of this scheme to bounded 3D domains yields an CPU complexity, which can be further reduced to quasi-linear complexities with proposed remedies. The scheme can also efficiently handle scattering problems involving inclusions in inhomogeneous media. Although the current construction of our HB integrator does not accommodate caustics, the resulting HB integrator itself can be applied to certain sources, such as concave-shaped sources, to produce caustic effects. Compared to finite-difference frequency domain methods, the proposed HB integrator is free of numerical dispersion and requires fewer discretization points per wavelength. As a result, it can solve wave propagation problems well beyond the capability of existing solvers. Remarkably, the proposed scheme can accurately model wave propagation in 2D domains with 640 wavelengths per direction and in 3D domains with 54 wavelengths per direction on a state-of-the-art supercomputer at Lawrence Berkeley National Laboratory.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2023-02-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1137/21m1450422","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
We present a butterfly-compressed representation of the Hadamard–Babich (HB) ansatz for the Green’s function of the high-frequency Helmholtz equation in smooth inhomogeneous media. For a computational domain discretized with discretization cells, the proposed algorithm first solves and tabulates the phase and HB coefficients via eikonal and transport equations with observation points and point sources located at the Chebyshev nodes using a set of much coarser computation grids, and then butterfly compresses the resulting HB interactions from all cell centers to each other. The overall CPU time and memory requirement scale as for any bounded two-dimensional (2D) domains with arbitrary excitation sources. A direct extension of this scheme to bounded 3D domains yields an CPU complexity, which can be further reduced to quasi-linear complexities with proposed remedies. The scheme can also efficiently handle scattering problems involving inclusions in inhomogeneous media. Although the current construction of our HB integrator does not accommodate caustics, the resulting HB integrator itself can be applied to certain sources, such as concave-shaped sources, to produce caustic effects. Compared to finite-difference frequency domain methods, the proposed HB integrator is free of numerical dispersion and requires fewer discretization points per wavelength. As a result, it can solve wave propagation problems well beyond the capability of existing solvers. Remarkably, the proposed scheme can accurately model wave propagation in 2D domains with 640 wavelengths per direction and in 3D domains with 54 wavelengths per direction on a state-of-the-art supercomputer at Lawrence Berkeley National Laboratory.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.