Two types of nitrogen and sulfur co-doped carbons derived from soybean sprouts enabling high performance lithium‑sulfur batteries

Lin Zhu, Wenjing Zheng, Hongbo Xie, Kan Zhang
{"title":"Two types of nitrogen and sulfur co-doped carbons derived from soybean sprouts enabling high performance lithium‑sulfur batteries","authors":"Lin Zhu, Wenjing Zheng, Hongbo Xie, Kan Zhang","doi":"10.1016/j.est.2023.107790","DOIUrl":null,"url":null,"abstract":"Lithium sulfur batteries (LiSBs) are regarded as the promising energy storage technologies because of its high energy density and theoretical capacity, rich sulfur cathode resources, low price and environmental friendliness. However, the utilization rate of sulfur is low and the capacity attenuation is fast due to the insulativity of sulfur, volume expansion/contraction and shuttle effect during charging and discharging, which seriously hinders its commercialization process. In this work, two types of nitrogen and sulfur co-doped carbons were designed and prepared by separating the roots and cotyledons of soybean sprouts. The as-prepared co-doped carbons were used as a coating on the commercial separator. The coated separator can not only physically adsorb polysulfides, but also increase the chemical adsorption of polysulfides due to the introduction of active sites by co-doping, so it can effectively inhibit the shuttle effect. The first discharge capacities of LiS batteries with NS-SSRC and NS-SSCC coated separators at 1C were 847.7 mAh g−1 and 888.1 mAh g−1, respectively, and they retained 389.7 mAh g−1 and 477.6 mAh g−1 after 500 cycles, respectively.","PeriodicalId":94331,"journal":{"name":"Journal of energy storage","volume":"35 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of energy storage","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/j.est.2023.107790","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Lithium sulfur batteries (LiSBs) are regarded as the promising energy storage technologies because of its high energy density and theoretical capacity, rich sulfur cathode resources, low price and environmental friendliness. However, the utilization rate of sulfur is low and the capacity attenuation is fast due to the insulativity of sulfur, volume expansion/contraction and shuttle effect during charging and discharging, which seriously hinders its commercialization process. In this work, two types of nitrogen and sulfur co-doped carbons were designed and prepared by separating the roots and cotyledons of soybean sprouts. The as-prepared co-doped carbons were used as a coating on the commercial separator. The coated separator can not only physically adsorb polysulfides, but also increase the chemical adsorption of polysulfides due to the introduction of active sites by co-doping, so it can effectively inhibit the shuttle effect. The first discharge capacities of LiS batteries with NS-SSRC and NS-SSCC coated separators at 1C were 847.7 mAh g−1 and 888.1 mAh g−1, respectively, and they retained 389.7 mAh g−1 and 477.6 mAh g−1 after 500 cycles, respectively.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
从大豆芽中提取的两种氮和硫共掺杂碳,可实现高性能锂硫电池
硫锂电池因其高能量密度和理论容量、丰富的硫阴极资源、低廉的价格和环境友好性而被认为是一种很有前途的储能技术。然而,由于硫的绝缘性、充放电过程中的体积膨胀/收缩和穿梭效应,硫的利用率低,容量衰减快,严重阻碍了其商业化进程。本文通过分离豆芽的根和子叶,设计并制备了两种氮硫共掺杂碳。制备的共掺杂碳被用作商用分离器的涂层。包覆分离器不仅可以物理吸附多硫化物,而且由于共掺杂引入了活性位点,增加了多硫化物的化学吸附,因此可以有效地抑制穿梭效应。采用NS-SSRC和NS-SSCC涂层的锂离子电池在1C下的首次放电容量分别为847.7 mAh g−1和888.1 mAh g−1,循环500次后分别保持389.7 mAh g−1和477.6 mAh g−1。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Experimental study on storage performance of packed bed solar thermal energy storage system using steel slag Thermally enhanced nanocomposite phase change material slurry for solar-thermal energy storage A bimetallic ZIF-based cathode with additional supplements of Zn2+ for zinc ion battery A π-conjugated organic compound with multiple active sites as a cathode material for high-rate aqueous zinc-ion batteries Loofah sponge-derived 3D flexible porous carbon electrode for high performance supercapacitor
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1