Numerical investigation on the effect of slit thickness and outlet angle of the bladeless fan for flow optimization using CFD techniques

IF 1.1 Q3 Engineering Journal of Thermal Engineering Pub Date : 2023-04-17 DOI:10.18186/thermal.1284657
Dineshkumar RAVI, Thundil Karuppa RAJ RAJAGOPAL
{"title":"Numerical investigation on the effect of slit thickness and outlet angle of the bladeless fan for flow optimization using CFD techniques","authors":"Dineshkumar RAVI, Thundil Karuppa RAJ RAJAGOPAL","doi":"10.18186/thermal.1284657","DOIUrl":null,"url":null,"abstract":"The effect of outlet thickness and outlet angle of the bladeless fan have been an alysed numerically on the aerodynamic performance of the bladeless fan. Five different aerofoil profiles have been considered for the present work is Eppler 479, Eppler169, Eppler 473, S1046 and S1048. The bladeless fan arrangement has been achieved by converting the aerodynamic models listed above. The ANSYS ICEM CFD 16.0 have been used to discretize the enclosure and bladeless fan through finite volume approach. The mesh model is then imported into ANSYS CFX 16.0 pre-processor for applying the required boundary conditions. The governing equations namely continuity and momentum are used to solve the flow physics through and across the bladeless fan and SST k-? turbulence model has been used to predict the turbulence in the bladeless fan. The effect of outlet thicknesses and outlet angles have been varied for all the five aerofoil configurations mentioned and the volumetric flow at inlet have been adjusted from 5 LPS to 80 LPS. Outlet thickness is varied from 0.8, 1.0, 1.3, 1.5 and 2 mm and the slit angle is varied from 20 degrees to 80 degrees in step of 10 degrees. The results predicted that Eppler 473 aerofoil profile showed better performance when the thickness of slit and outlet angle has been fixed constant as 1 mm and 70 degree respectively. Also, the maximum discharge flow ratio is recorded for an inlet volumetric flow rate of 80 LPS and it is found to be 34.37. The present numerical study substantiated that outlet thickness plays a dominant role on the bladeless fan’s aerodynamic performance compared to outlet angle and aerodynamic shape considered in this numerical analysis. The contours of velocity, streamline and pressure of the bladeless fan have been discussed.","PeriodicalId":45841,"journal":{"name":"Journal of Thermal Engineering","volume":null,"pages":null},"PeriodicalIF":1.1000,"publicationDate":"2023-04-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Thermal Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18186/thermal.1284657","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0

Abstract

The effect of outlet thickness and outlet angle of the bladeless fan have been an alysed numerically on the aerodynamic performance of the bladeless fan. Five different aerofoil profiles have been considered for the present work is Eppler 479, Eppler169, Eppler 473, S1046 and S1048. The bladeless fan arrangement has been achieved by converting the aerodynamic models listed above. The ANSYS ICEM CFD 16.0 have been used to discretize the enclosure and bladeless fan through finite volume approach. The mesh model is then imported into ANSYS CFX 16.0 pre-processor for applying the required boundary conditions. The governing equations namely continuity and momentum are used to solve the flow physics through and across the bladeless fan and SST k-? turbulence model has been used to predict the turbulence in the bladeless fan. The effect of outlet thicknesses and outlet angles have been varied for all the five aerofoil configurations mentioned and the volumetric flow at inlet have been adjusted from 5 LPS to 80 LPS. Outlet thickness is varied from 0.8, 1.0, 1.3, 1.5 and 2 mm and the slit angle is varied from 20 degrees to 80 degrees in step of 10 degrees. The results predicted that Eppler 473 aerofoil profile showed better performance when the thickness of slit and outlet angle has been fixed constant as 1 mm and 70 degree respectively. Also, the maximum discharge flow ratio is recorded for an inlet volumetric flow rate of 80 LPS and it is found to be 34.37. The present numerical study substantiated that outlet thickness plays a dominant role on the bladeless fan’s aerodynamic performance compared to outlet angle and aerodynamic shape considered in this numerical analysis. The contours of velocity, streamline and pressure of the bladeless fan have been discussed.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于CFD技术的无叶风扇狭缝厚度和出口角对流动优化影响的数值研究
数值分析了无叶风机出口厚度和出口角度对无叶风机气动性能的影响。5种不同的翼型已被考虑为目前的工作是Eppler 479, Eppler169, Eppler 473, S1046和S1048。无叶风扇的布置是通过转换上面列出的空气动力学模型来实现的。采用ANSYS ICEM CFD 16.0软件,采用有限体积法对机壳和无叶风扇进行离散化。然后将网格模型导入ANSYS CFX 16.0预处理器中,应用所需的边界条件。控制方程即连续性和动量用于求解通过和穿过无叶风扇和SST k-?采用紊流模型对无叶风机内部的紊流进行了预测。对于上述所有五种翼型构型,出口厚度和出口角度的影响都有所不同,进口体积流量从5 LPS调整到80 LPS。出口厚度从0.8、1.0、1.3、1.5、2mm不等,狭缝角度以10度为步进从20度到80度不等。结果表明,当狭缝厚度和出口角分别固定为1 mm和70°时,Eppler 473翼型具有较好的性能。同时,在进口体积流量为80 LPS时,最大流量比为34.37。本文的数值研究表明,与本文所考虑的出口角度和气动形状相比,出口厚度对无叶风扇气动性能的影响更为显著。讨论了无叶风机的速度、流线和压力轮廓。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
2.40
自引率
18.20%
发文量
61
审稿时长
4 weeks
期刊介绍: Journal of Thermal Enginering is aimed at giving a recognized platform to students, researchers, research scholars, teachers, authors and other professionals in the field of research in Thermal Engineering subjects, to publish their original and current research work to a wide, international audience. In order to achieve this goal, we will have applied for SCI-Expanded Index in 2021 after having an Impact Factor in 2020. The aim of the journal, published on behalf of Yildiz Technical University in Istanbul-Turkey, is to not only include actual, original and applied studies prepared on the sciences of heat transfer and thermodynamics, and contribute to the literature of engineering sciences on the national and international areas but also help the development of Mechanical Engineering. Engineers and academicians from disciplines of Power Plant Engineering, Energy Engineering, Building Services Engineering, HVAC Engineering, Solar Engineering, Wind Engineering, Nanoengineering, surface engineering, thin film technologies, and Computer Aided Engineering will be expected to benefit from this journal’s outputs.
期刊最新文献
Evaluation of the thermal efficiency of nanofluid flows in flat plate solar collector Experimental investigation of double-glazed double-pass solar airheater (DG-DPSAH) with multi-v ribs having trapezoidal roughness geometry Experimental evaluation of the effect of leakage in scroll compressor Performance enhancement of stepped solar still coupled with evacuated tube collector An experimental investigation to study the performance characteristics of heat pipe using aqueous hybrid nanofluids
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1