{"title":"Applicability of Numerical Simulation to the Classification of Fluid Dynamic Loss in Aeroengine Transmission Gears","authors":"Hidenori Arisawa, Mitsuaki TANAKA, Hironori HASHIMOTO, Tatsuhiko Goi, Takahiko Banno, Hideyuki Imai","doi":"10.1115/1.4063713","DOIUrl":null,"url":null,"abstract":"Abstract In high-speed gear systems for aeroengines, reducing the fluid dynamic loss, which accounts for the majority of power loss, can significantly improve fuel economy. However, few practical numerical examples are available regarding high-speed gas-liquid two-phase flows involving gear meshing and gear shrouds (gear enclosures, which are effective for loss reduction). Therefore, in this study, the porosity method for object boundaries including the gear meshing, the volume of fluid method, and the surface compression method for the gas-liquid interface were used as fast and numerically stable calculation methods. In addition, a gap was provided at the contact surface of the gear tooth surface to improve the calculation stability, and the oil properties were set considering the difference between the flow resistance in a two-phase flow and that in a single-phase flow (due to the separation of oil particles) to improve the calculation accuracy. To validate the numerical simulation method, a two-axis helical gearbox with a maximum peripheral speed of 100 m/s with specifications equivalent to aeroengine gears was used, and the air flow, oil flow, and fluid dynamic losses were validated. Once the practical accuracy was confirmed, the numerical simulation was used to understand the relationship among air and oil flows, torque, and the effect of the shroud. Consequently, the fluid dynamic loss could be classified phenomenologically.","PeriodicalId":15685,"journal":{"name":"Journal of Engineering for Gas Turbines and Power-transactions of The Asme","volume":null,"pages":null},"PeriodicalIF":1.4000,"publicationDate":"2023-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Engineering for Gas Turbines and Power-transactions of The Asme","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/1.4063713","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Abstract In high-speed gear systems for aeroengines, reducing the fluid dynamic loss, which accounts for the majority of power loss, can significantly improve fuel economy. However, few practical numerical examples are available regarding high-speed gas-liquid two-phase flows involving gear meshing and gear shrouds (gear enclosures, which are effective for loss reduction). Therefore, in this study, the porosity method for object boundaries including the gear meshing, the volume of fluid method, and the surface compression method for the gas-liquid interface were used as fast and numerically stable calculation methods. In addition, a gap was provided at the contact surface of the gear tooth surface to improve the calculation stability, and the oil properties were set considering the difference between the flow resistance in a two-phase flow and that in a single-phase flow (due to the separation of oil particles) to improve the calculation accuracy. To validate the numerical simulation method, a two-axis helical gearbox with a maximum peripheral speed of 100 m/s with specifications equivalent to aeroengine gears was used, and the air flow, oil flow, and fluid dynamic losses were validated. Once the practical accuracy was confirmed, the numerical simulation was used to understand the relationship among air and oil flows, torque, and the effect of the shroud. Consequently, the fluid dynamic loss could be classified phenomenologically.
期刊介绍:
The ASME Journal of Engineering for Gas Turbines and Power publishes archival-quality papers in the areas of gas and steam turbine technology, nuclear engineering, internal combustion engines, and fossil power generation. It covers a broad spectrum of practical topics of interest to industry. Subject areas covered include: thermodynamics; fluid mechanics; heat transfer; and modeling; propulsion and power generation components and systems; combustion, fuels, and emissions; nuclear reactor systems and components; thermal hydraulics; heat exchangers; nuclear fuel technology and waste management; I. C. engines for marine, rail, and power generation; steam and hydro power generation; advanced cycles for fossil energy generation; pollution control and environmental effects.