{"title":"The KI-ASIC Dataset","authors":"","doi":"10.33140/jsndc.03.01.02","DOIUrl":null,"url":null,"abstract":"We present a novel dataset captured from a BMW X5 test carrier within the German research project KI-ASIC for use in radar sensor development and autonomous driving research. Our work aims at providing a blueprint for the process of creating labeled datasets for the development of neural networks for pattern recognition in radar data in the automotive environment. With a variety of different sensor types such as wide angle color cameras, a high-resolution color stereo camera, an Ouster OS1-64 laser scanner and three novel Infineon radar sensors, we recorded over 100,000 scenes of real traffic scenarios as well as defined test scenarios with a frequency of 10 Hz. The scenarios in real traffic contain inner-city situations, but also scenes from rural areas with static and dynamic objects. Besides, the defined test scenarios are based on the NCAP scenarios and focus mostly on turning, overtaking and follow-up maneuvers. The data from the different sensors is calibrated, synchronized and timestamped including raw and rectified information. Our dataset also contains labels for all detected objects from a defined class list with distance and angle properties. The content of the paper aims at the description of the recording test carrier, the format of the provided sensor data and the structure of the overall dataset","PeriodicalId":91517,"journal":{"name":"International journal of sensor networks and data communications","volume":"19 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-09-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International journal of sensor networks and data communications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.33140/jsndc.03.01.02","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We present a novel dataset captured from a BMW X5 test carrier within the German research project KI-ASIC for use in radar sensor development and autonomous driving research. Our work aims at providing a blueprint for the process of creating labeled datasets for the development of neural networks for pattern recognition in radar data in the automotive environment. With a variety of different sensor types such as wide angle color cameras, a high-resolution color stereo camera, an Ouster OS1-64 laser scanner and three novel Infineon radar sensors, we recorded over 100,000 scenes of real traffic scenarios as well as defined test scenarios with a frequency of 10 Hz. The scenarios in real traffic contain inner-city situations, but also scenes from rural areas with static and dynamic objects. Besides, the defined test scenarios are based on the NCAP scenarios and focus mostly on turning, overtaking and follow-up maneuvers. The data from the different sensors is calibrated, synchronized and timestamped including raw and rectified information. Our dataset also contains labels for all detected objects from a defined class list with distance and angle properties. The content of the paper aims at the description of the recording test carrier, the format of the provided sensor data and the structure of the overall dataset
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
KI-ASIC数据集
在德国研究项目KI-ASIC中,我们提出了一个从宝马X5测试载体上捕获的新数据集,用于雷达传感器开发和自动驾驶研究。我们的工作旨在为创建标记数据集的过程提供蓝图,以开发用于汽车环境中雷达数据模式识别的神经网络。通过各种不同类型的传感器,如广角彩色摄像头、高分辨率彩色立体摄像头、Ouster OS1-64激光扫描仪和三个新型英飞凌雷达传感器,我们记录了超过100,000个真实交通场景以及频率为10hz的定义测试场景。真实的交通场景包含城市内部的情况,但也有来自农村的静态和动态物体的场景。此外,所定义的测试场景以NCAP场景为基础,主要集中在转向、超车和后续机动方面。来自不同传感器的数据经过校准、同步和时间戳,包括原始和校正信息。我们的数据集还包含从定义的类列表中检测到的所有具有距离和角度属性的对象的标签。本文的内容旨在描述记录测试载体,提供的传感器数据的格式和整体数据集的结构
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Program Operators SIT, tS, S1 e, Set1 Towards Ultraviolet Microbeam Scanning and Lens-Less UV Microbeam Microscopy with Mirror Galvanometric Scanners: From the History of Research Instrumentation to Engineering of Modern Mechatronic Optical Systems Smart Surveillance: A Review & Survey Through Deep Learning Techniques for Detection & Analysis Deep Surveillance System Federated Learning for Collaborative Network Security in Decentralized Environments
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1