Agnimitra Sengupta, Hoda Azari, S. Ilgin Guler, Parisa Shokouhi
{"title":"Validating a Physics-Based Automatic Classification Scheme for Impact Echo Signals on Data Using a Concrete Slab with Known Defects","authors":"Agnimitra Sengupta, Hoda Azari, S. Ilgin Guler, Parisa Shokouhi","doi":"10.1177/03611981231173649","DOIUrl":null,"url":null,"abstract":"Impact echo (IE) is capable of locating subsurface defects in concrete slabs from the vibrational response of the slab to a mechanical impact. For an intact slab (“good” condition), the frequency spectrum of the IE is dominated by a single peak corresponding to the slab’s “thickness resonance frequency,” whereas the presence of subsurface defects (“fair” or “poor” conditions) could manifest in various ways such as multiple distinct peaks at frequencies higher, or lower, than the thickness resonance. In previous research, the authors have proposed a frequency partitioning of the spectrum for IE signal classification. Firstly, the thickness resonance frequency band is identified using a data-driven approach and then the IE signals are represented by their energy distribution in three bands—frequencies less than, within, and greater than the thickness resonance. Following this feature extraction, an unsupervised clustering approach is used to identify the centroids for each signal class—good, fair, and poor—which are further used to classify any test signal into one of the three aforementioned classes. The classification is developed by training on unlabeled IE signals from real bridge deck data (the Federal Highway Administration’s [FHWA’s] InfoBridge dataset) without making use of any labeled data. This study aims to validate the proposed methodology on a labeled dataset of eight reinforced concrete specimens constructed at the FHWA Advanced Sensing Technology Nondestructive Evaluation laboratory having known artificial defects. Our findings indicate that the physics-based feature definition and the method developed on real bridge data are robust and can classify IE signals in the labeled data with moderate accuracy.","PeriodicalId":23279,"journal":{"name":"Transportation Research Record","volume":"30 1","pages":"0"},"PeriodicalIF":1.6000,"publicationDate":"2023-06-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Transportation Research Record","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1177/03611981231173649","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
引用次数: 0
Abstract
Impact echo (IE) is capable of locating subsurface defects in concrete slabs from the vibrational response of the slab to a mechanical impact. For an intact slab (“good” condition), the frequency spectrum of the IE is dominated by a single peak corresponding to the slab’s “thickness resonance frequency,” whereas the presence of subsurface defects (“fair” or “poor” conditions) could manifest in various ways such as multiple distinct peaks at frequencies higher, or lower, than the thickness resonance. In previous research, the authors have proposed a frequency partitioning of the spectrum for IE signal classification. Firstly, the thickness resonance frequency band is identified using a data-driven approach and then the IE signals are represented by their energy distribution in three bands—frequencies less than, within, and greater than the thickness resonance. Following this feature extraction, an unsupervised clustering approach is used to identify the centroids for each signal class—good, fair, and poor—which are further used to classify any test signal into one of the three aforementioned classes. The classification is developed by training on unlabeled IE signals from real bridge deck data (the Federal Highway Administration’s [FHWA’s] InfoBridge dataset) without making use of any labeled data. This study aims to validate the proposed methodology on a labeled dataset of eight reinforced concrete specimens constructed at the FHWA Advanced Sensing Technology Nondestructive Evaluation laboratory having known artificial defects. Our findings indicate that the physics-based feature definition and the method developed on real bridge data are robust and can classify IE signals in the labeled data with moderate accuracy.
期刊介绍:
Transportation Research Record: Journal of the Transportation Research Board is one of the most cited and prolific transportation journals in the world, offering unparalleled depth and breadth in the coverage of transportation-related topics. The TRR publishes approximately 70 issues annually of outstanding, peer-reviewed papers presenting research findings in policy, planning, administration, economics and financing, operations, construction, design, maintenance, safety, and more, for all modes of transportation. This site provides electronic access to a full compilation of papers since the 1996 series.