Conghui Huang, Timothy R. Ginn, Gemma G. Clark, Farzana R. Zaki, Jungeun Won, Stephen A. Boppart, Thanh H. Nguyen
{"title":"Phosphate-Based Corrosion Inhibition in Drinking Water Systems and Effects on Disinfectant Decay and Biofilm Growth","authors":"Conghui Huang, Timothy R. Ginn, Gemma G. Clark, Farzana R. Zaki, Jungeun Won, Stephen A. Boppart, Thanh H. Nguyen","doi":"10.1089/ees.2023.0065","DOIUrl":null,"url":null,"abstract":"Disinfectant decay by biofilms in distribution networks during stagnation can allow opportunistic pathogens' transmission and thus compromise drinking water safety. Applying phosphate-based corrosion inhibitors to the system can exacerbate disinfectant decay by providing nutrients to biofilms growing inside premise plumbings. In this study, we evaluate the impacts of corrosion inhibitors on biofilms' structural and chemical properties that form in premise plumbing, and the resulting implications for disinfectant decay. Two commonly used phosphate-based (phosphate blends and phosphate) corrosion inhibitors were added separately to simulated drinking water for biofilm development over 1 to 2 years. Optical coherence tomography (OCT) imaging showed that the studied biofilms' thickness, porosity, and porous structure did not change after exposure to free chlorine for 24 h or monochloramine for 120 h. Compared with groundwater biofilms, phosphate-based biofilms had the highest overall porosity due to their many connecting channels. The phosphate-based biofilms consumed free chlorine or monochloramine at a faster rate than groundwater biofilms. Experimental results showed that phosphate-based biofilms consumed more monochloramine after 96 h of contact than other biofilms. A separate set of experiments involving disinfectant decay with suspended biomass material, together with the OCT results, provided parameters for a simplified quasi-first-order reaction–diffusion model so that predictive modeling of decay in biofilms under stagnation conditions could be attempted without parameter fitting. The biofilm modeling results provided a close estimate for free chlorine decay while underestimating monochloramine decay. In agreement with the experimental results, the model results indicate that the phosphate-based biofilms led to slightly faster free chlorine consumption and monochloramine consumption than groundwater biofilms and indicate that diffusion limitation imposed by biofilm pore structure on disinfectant decay is important. The study results suggest that using phosphate-based corrosion inhibitors may lead to a rapid depletion of residual disinfectant during stagnation in the presence of biofilms.","PeriodicalId":11777,"journal":{"name":"Environmental Engineering Science","volume":"25 1","pages":"0"},"PeriodicalIF":1.8000,"publicationDate":"2023-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Engineering Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1089/ees.2023.0065","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
引用次数: 1
Abstract
Disinfectant decay by biofilms in distribution networks during stagnation can allow opportunistic pathogens' transmission and thus compromise drinking water safety. Applying phosphate-based corrosion inhibitors to the system can exacerbate disinfectant decay by providing nutrients to biofilms growing inside premise plumbings. In this study, we evaluate the impacts of corrosion inhibitors on biofilms' structural and chemical properties that form in premise plumbing, and the resulting implications for disinfectant decay. Two commonly used phosphate-based (phosphate blends and phosphate) corrosion inhibitors were added separately to simulated drinking water for biofilm development over 1 to 2 years. Optical coherence tomography (OCT) imaging showed that the studied biofilms' thickness, porosity, and porous structure did not change after exposure to free chlorine for 24 h or monochloramine for 120 h. Compared with groundwater biofilms, phosphate-based biofilms had the highest overall porosity due to their many connecting channels. The phosphate-based biofilms consumed free chlorine or monochloramine at a faster rate than groundwater biofilms. Experimental results showed that phosphate-based biofilms consumed more monochloramine after 96 h of contact than other biofilms. A separate set of experiments involving disinfectant decay with suspended biomass material, together with the OCT results, provided parameters for a simplified quasi-first-order reaction–diffusion model so that predictive modeling of decay in biofilms under stagnation conditions could be attempted without parameter fitting. The biofilm modeling results provided a close estimate for free chlorine decay while underestimating monochloramine decay. In agreement with the experimental results, the model results indicate that the phosphate-based biofilms led to slightly faster free chlorine consumption and monochloramine consumption than groundwater biofilms and indicate that diffusion limitation imposed by biofilm pore structure on disinfectant decay is important. The study results suggest that using phosphate-based corrosion inhibitors may lead to a rapid depletion of residual disinfectant during stagnation in the presence of biofilms.
期刊介绍:
Environmental Engineering Science explores innovative solutions to problems in air, water, and land contamination and waste disposal, with coverage of climate change, environmental risk assessment and management, green technologies, sustainability, and environmental policy. Published monthly online, the Journal features applications of environmental engineering and scientific discoveries, policy issues, environmental economics, and sustainable development.