Rheological, Ballistic, and Mechanical Properties of 3D Printed, Photocured Composite Propellants

IF 1.7 4区 工程技术 Q2 ENGINEERING, AEROSPACE Journal of Propulsion and Power Pub Date : 2023-11-01 DOI:10.2514/1.b39113
Justin Lajoie, Jacob Blocker, Travis Sippel
{"title":"Rheological, Ballistic, and Mechanical Properties of 3D Printed, Photocured Composite Propellants","authors":"Justin Lajoie, Jacob Blocker, Travis Sippel","doi":"10.2514/1.b39113","DOIUrl":null,"url":null,"abstract":"This study explores the rheological, mechanical, and ballistic properties of printed ammonium perchlorate composite propellant at 82.5% solids loading with binders curable with ultraviolet light of wavelength from 215 to 400 nm (UV). A polybutadiene urethane acrylate and two polyester urethane acrylate propellants are printed by an in-house-fabricated fused deposition molding printer. Propellants are all shear-thinning and have significantly lower viscosity than similar hydroxyl-terminated polybutadiene (HTPB) propellants. Uniaxial stress–strain measurements indicate that ultimate tensile strength and ultimate tensile strain of all photocurable propellants are found to be greater than HTPB propellant. In particular, the ultimate tensile strain of polyester urethane acrylate propellant is six times that of HTPB propellant, demonstrating high compliance. Ballistic properties are measured from combustion of printed propellant articles in a windowed Crawford combustion bomb at inert gas pressures of up to 12.1 MPa. The burning characteristics were found to be relatively planar, though strong burning rate anisotropy, expected as a result of print layer inhomogeneities, was observed in two of the three formulations. Overall, pressure exponents of the propellants were mild and ranged from 0.17 to 0.33. These results are compared and contrasted to those of other printed propellants. These results provide valuable insight into the selection of a safe binder system for printing of photocurable composite propellants.","PeriodicalId":16903,"journal":{"name":"Journal of Propulsion and Power","volume":"256 ","pages":"0"},"PeriodicalIF":1.7000,"publicationDate":"2023-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Propulsion and Power","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2514/1.b39113","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, AEROSPACE","Score":null,"Total":0}
引用次数: 1

Abstract

This study explores the rheological, mechanical, and ballistic properties of printed ammonium perchlorate composite propellant at 82.5% solids loading with binders curable with ultraviolet light of wavelength from 215 to 400 nm (UV). A polybutadiene urethane acrylate and two polyester urethane acrylate propellants are printed by an in-house-fabricated fused deposition molding printer. Propellants are all shear-thinning and have significantly lower viscosity than similar hydroxyl-terminated polybutadiene (HTPB) propellants. Uniaxial stress–strain measurements indicate that ultimate tensile strength and ultimate tensile strain of all photocurable propellants are found to be greater than HTPB propellant. In particular, the ultimate tensile strain of polyester urethane acrylate propellant is six times that of HTPB propellant, demonstrating high compliance. Ballistic properties are measured from combustion of printed propellant articles in a windowed Crawford combustion bomb at inert gas pressures of up to 12.1 MPa. The burning characteristics were found to be relatively planar, though strong burning rate anisotropy, expected as a result of print layer inhomogeneities, was observed in two of the three formulations. Overall, pressure exponents of the propellants were mild and ranged from 0.17 to 0.33. These results are compared and contrasted to those of other printed propellants. These results provide valuable insight into the selection of a safe binder system for printing of photocurable composite propellants.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
3D打印、光固化复合推进剂的流变、弹道和机械性能
本研究探讨了高氯酸铵复合推进剂在82.5%固体载荷下的流变性、力学性能和弹道性能,并用波长为215 ~ 400 nm的紫外光固化粘合剂。一种聚丁二烯聚氨酯丙烯酸酯和两种聚酯聚氨酯丙烯酸酯推进剂通过内部制造的熔融沉积成型打印机打印。与类似的端羟基聚丁二烯(HTPB)推进剂相比,推进剂都是剪切减薄的,粘度明显更低。单轴应力应变测量结果表明,所有光固化推进剂的极限拉伸强度和极限拉伸应变均大于HTPB推进剂。特别是聚酯聚氨酯丙烯酸酯推进剂的极限拉伸应变是HTPB推进剂的6倍,具有较高的顺应性。在高达12.1 MPa的惰性气体压力下,通过在有窗的克劳福德燃烧弹中燃烧印刷推进剂的弹道性能进行了测量。燃烧特性被发现是相对平面的,尽管在三种配方中的两种中观察到强烈的燃烧速率各向异性,这是由于印刷层的不均匀性所导致的。总的来说,推进剂的压力指数比较温和,在0.17 ~ 0.33之间。这些结果与其他打印推进剂的结果进行了比较和对比。这些结果为选择用于光固化复合推进剂印刷的安全粘结剂系统提供了有价值的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Propulsion and Power
Journal of Propulsion and Power 工程技术-工程:宇航
CiteScore
4.20
自引率
21.10%
发文量
97
审稿时长
6.5 months
期刊介绍: This Journal is devoted to the advancement of the science and technology of aerospace propulsion and power through the dissemination of original archival papers contributing to advancements in airbreathing, electric, and advanced propulsion; solid and liquid rockets; fuels and propellants; power generation and conversion for aerospace vehicles; and the application of aerospace science and technology to terrestrial energy devices and systems. It is intended to provide readers of the Journal, with primary interests in propulsion and power, access to papers spanning the range from research through development to applications. Papers in these disciplines and the sciences of combustion, fluid mechanics, and solid mechanics as directly related to propulsion and power are solicited.
期刊最新文献
Impact of Future Low-Emissions Combustor Technology on Acoustic Scaling Laws Experimental Investigation on Atomization of JP-10 Slurry Jets Containing Boron Nanoparticles Fuel Temperature Effects on Combustion Stability of a High-Pressure Liquid-Fueled Swirl Flame Optimization of Thrust of a Generic X-51 Hypersonic Vehicle Application of Boundary Layer Combustion in High-Mach-Number Scramjets
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1