Investigation of Sloshing in Different Tank Shapes using Smoothed Particle Hydrodynamics

Q2 Mathematics CFD Letters Pub Date : 2023-10-30 DOI:10.37934/cfdl.15.12.1933
None Andi Trimulyono, None Suci Utami, None Deddy Chrismianto, None Parlindungan Manik
{"title":"Investigation of Sloshing in Different Tank Shapes using Smoothed Particle Hydrodynamics","authors":"None Andi Trimulyono, None Suci Utami, None Deddy Chrismianto, None Parlindungan Manik","doi":"10.37934/cfdl.15.12.1933","DOIUrl":null,"url":null,"abstract":"Sloshing is the violent motion of a resonant fluid in a moving tank; when the fluid moves and interacts with the tank, the dynamic pressure from such an interaction can cause large fluid deformations with tank walls. In this study, a 3D numerical simulation of sloshing was carried out with five variations of the tank model, i.e., prismatic, rectangular, tube, spherical, and the new model tank with a filling ratio of 25% and 50%. Forced oscillation motion in a roll used frequencies 1.04 Hz and 1.34 Hz. The amplitude of movement was 8.66°. One pressure sensor was used to measure dynamic pressure in the mid of the tank. Because sloshing deals with large deformation and discontinuities, the particle method was suitable for the application. This study used smoothed particle hydrodynamics based on weakly compressible SPH (WCSPH). SPH is a Lagrangian meshless method known as mesh-free computational fluid dynamics. Open-source SPH solver version 5.0 was used to reproduce sloshing in different tank shapes; in addition, advanced visualization was performed using the VisualSPHysics add-on in Blender version 2.92. The sloshing visualization is more realistic and attractive than conventional SPH post-processing. The results of this study indicate that different tank shapes influence reducing the value of dynamic pressure and hydrodynamic force. It is found that a practical tank shape is a tube tank and a new model tank with a reduced dynamic pressure value of 9% and 11% and a reduced hydrodynamic force value of 36% and 48%.","PeriodicalId":9736,"journal":{"name":"CFD Letters","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"CFD Letters","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.37934/cfdl.15.12.1933","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0

Abstract

Sloshing is the violent motion of a resonant fluid in a moving tank; when the fluid moves and interacts with the tank, the dynamic pressure from such an interaction can cause large fluid deformations with tank walls. In this study, a 3D numerical simulation of sloshing was carried out with five variations of the tank model, i.e., prismatic, rectangular, tube, spherical, and the new model tank with a filling ratio of 25% and 50%. Forced oscillation motion in a roll used frequencies 1.04 Hz and 1.34 Hz. The amplitude of movement was 8.66°. One pressure sensor was used to measure dynamic pressure in the mid of the tank. Because sloshing deals with large deformation and discontinuities, the particle method was suitable for the application. This study used smoothed particle hydrodynamics based on weakly compressible SPH (WCSPH). SPH is a Lagrangian meshless method known as mesh-free computational fluid dynamics. Open-source SPH solver version 5.0 was used to reproduce sloshing in different tank shapes; in addition, advanced visualization was performed using the VisualSPHysics add-on in Blender version 2.92. The sloshing visualization is more realistic and attractive than conventional SPH post-processing. The results of this study indicate that different tank shapes influence reducing the value of dynamic pressure and hydrodynamic force. It is found that a practical tank shape is a tube tank and a new model tank with a reduced dynamic pressure value of 9% and 11% and a reduced hydrodynamic force value of 36% and 48%.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于光滑粒子流体力学的不同槽形晃动研究
晃动是运动槽中共振流体的剧烈运动;当流体运动并与储罐相互作用时,这种相互作用产生的动压力会导致流体与储罐壁发生较大的变形。在本研究中,采用棱柱形、矩形、筒形、球形以及填充率为25%和50%的新型油箱五种不同的油箱模型,进行了晃动的三维数值模拟。横摇中的强迫振荡运动使用的频率为1.04 Hz和1.34 Hz。运动幅度为8.66°。一个压力传感器用于测量罐体中部的动态压力。由于晃动处理的是大的变形和不连续性,因此颗粒法适合应用。本研究采用基于弱可压缩SPH (WCSPH)的光滑粒子流体力学方法。SPH是一种拉格朗日无网格方法,称为无网格计算流体动力学。开源SPH求解器5.0版本用于再现不同槽形的晃动;此外,使用Blender 2.92版本中的visualspphysics插件执行高级可视化。晃动可视化比传统的SPH后处理更加逼真和吸引人。研究结果表明,不同的水箱形状对动压力和水动力的减小值有影响。研究发现,实用的罐型是管式罐和新型罐,动压值分别降低9%和11%,水动力值分别降低36%和48%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CFD Letters
CFD Letters Chemical Engineering-Fluid Flow and Transfer Processes
CiteScore
3.40
自引率
0.00%
发文量
76
期刊最新文献
Numerical Investigation of Thermal Performance for Turbulent Water Flow through Dimpled Pipe MHD Stagnation Point Flow of Micropolar Fluid over a Stretching/ Shrinking Sheet Unsteady MHD Walter’s-B Viscoelastic Flow Past a Vertical Porous Plate Effects of Activation Energy and Diffusion Thermo an Unsteady MHD Maxwell Fluid Flow over a Porous Vertical Stretched Sheet in the Presence of Thermophoresis and Brownian Motion Effect of Inlet Pressure on the Polyurethane Spray Nozzle for Soil Cracking Improvement: Simulations using CFD Method
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1