{"title":"A Novel Swarm Unmanned Aerial Vehicle System: Incorporating Autonomous Flight, Real-Time Object Detection, and Coordinated Intelligence for Enhanced Performance","authors":"Murat Bakirci","doi":"10.18280/ts.400524","DOIUrl":null,"url":null,"abstract":"Presently, swarm Unmanned Aerial Vehicle (UAV) systems confront an array of obstacles and constraints that detrimentally affect their efficiency and mission performance. These include restrictions on communication range, which impede operations across extensive terrains or remote locations; inadequate processing capabilities for intricate tasks such as real-time object detection or advanced data analytics; network congestion due to a large number of UAVs, resulting in delayed data exchange and potential communication failures; and power management inefficiencies reducing flight duration and overall mission endurance. Addressing these issues is paramount for the successful implementation and operation of swarm UAV systems across various real-world applications. This paper proposes a novel system designed to surmount these challenges through salient features such as fortified communication, collaborative hardware integration, task distribution, optimized network topology, and efficient routing protocols. Cost-effectiveness was prioritized in selecting the most accessible equipment satisfying minimum requirements, identified through comprehensive literature and market review. By focusing on energy efficiency and high performance, successful cooperation was facilitated through harmonized equipment and effective task division. The proposed system utilizes Raspberry Pi and Jetson Nano for task division, endowing the UAVs with superior intelligence for navigating intricate environments, real-time object detection, and the execution of coordinated actions. The incorporation of the Ad Hoc UAV Network's decentralized approach enables system adaptability and expansion in response to evolving environments and mission demands. An efficient routing protocol was selected for the system, minimizing unnecessary broadcasting and reducing network congestion, thereby ensuring extended flight durations and enhanced mission capabilities for UAVs with limited battery capacity. Through the careful selection and testing of hardware and software components, the proposed swarm UAV system improves communication range, processing power, autonomy, scalability, and energy efficiency. This makes it highly adaptable and effective for a broad spectrum of real-world applications. The proposed system sets a new standard in the field, demonstrating how the integration of intelligent hardware, optimized task division, and efficient networking can overcome the limitations of current swarm UAV systems.","PeriodicalId":49430,"journal":{"name":"Traitement Du Signal","volume":"17 7","pages":"0"},"PeriodicalIF":1.2000,"publicationDate":"2023-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Traitement Du Signal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18280/ts.400524","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
Presently, swarm Unmanned Aerial Vehicle (UAV) systems confront an array of obstacles and constraints that detrimentally affect their efficiency and mission performance. These include restrictions on communication range, which impede operations across extensive terrains or remote locations; inadequate processing capabilities for intricate tasks such as real-time object detection or advanced data analytics; network congestion due to a large number of UAVs, resulting in delayed data exchange and potential communication failures; and power management inefficiencies reducing flight duration and overall mission endurance. Addressing these issues is paramount for the successful implementation and operation of swarm UAV systems across various real-world applications. This paper proposes a novel system designed to surmount these challenges through salient features such as fortified communication, collaborative hardware integration, task distribution, optimized network topology, and efficient routing protocols. Cost-effectiveness was prioritized in selecting the most accessible equipment satisfying minimum requirements, identified through comprehensive literature and market review. By focusing on energy efficiency and high performance, successful cooperation was facilitated through harmonized equipment and effective task division. The proposed system utilizes Raspberry Pi and Jetson Nano for task division, endowing the UAVs with superior intelligence for navigating intricate environments, real-time object detection, and the execution of coordinated actions. The incorporation of the Ad Hoc UAV Network's decentralized approach enables system adaptability and expansion in response to evolving environments and mission demands. An efficient routing protocol was selected for the system, minimizing unnecessary broadcasting and reducing network congestion, thereby ensuring extended flight durations and enhanced mission capabilities for UAVs with limited battery capacity. Through the careful selection and testing of hardware and software components, the proposed swarm UAV system improves communication range, processing power, autonomy, scalability, and energy efficiency. This makes it highly adaptable and effective for a broad spectrum of real-world applications. The proposed system sets a new standard in the field, demonstrating how the integration of intelligent hardware, optimized task division, and efficient networking can overcome the limitations of current swarm UAV systems.
期刊介绍:
The TS provides rapid dissemination of original research in the field of signal processing, imaging and visioning. Since its founding in 1984, the journal has published articles that present original research results of a fundamental, methodological or applied nature. The editorial board welcomes articles on the latest and most promising results of academic research, including both theoretical results and case studies.
The TS welcomes original research papers, technical notes and review articles on various disciplines, including but not limited to:
Signal processing
Imaging
Visioning
Control
Filtering
Compression
Data transmission
Noise reduction
Deconvolution
Prediction
Identification
Classification.