A hierarchical control framework for alleviating network traffic bottleneck congestion using vehicle trajectory data

IF 2.8 3区 工程技术 Q3 TRANSPORTATION Journal of Intelligent Transportation Systems Pub Date : 2024-11-01 DOI:10.1080/15472450.2023.2270428
Lei Wei , Peng Chen , Yu Mei , Jian Sun , Yunpeng Wang
{"title":"A hierarchical control framework for alleviating network traffic bottleneck congestion using vehicle trajectory data","authors":"Lei Wei ,&nbsp;Peng Chen ,&nbsp;Yu Mei ,&nbsp;Jian Sun ,&nbsp;Yunpeng Wang","doi":"10.1080/15472450.2023.2270428","DOIUrl":null,"url":null,"abstract":"<div><div>Traffic bottlenecks significantly influence the operation efficiency of large-scale road networks. Developing advanced control strategies for bottleneck optimization is a cost-efficient and critical way to deal with network congestion. However, the state-of-the-art studies on network congestion control focus on the topology level, which may fail to relieve congestion by addressing the root cause of bottleneck. This study proposed a hierarchical control framework for alleviating network traffic bottleneck congestion using vehicle trajectory data. First, the bottleneck-related sub-network (BRS) was identified by tracing vehicle trajectories upstream and downstream of the bottleneck based on the traffic flow propagation. Then, a hierarchical control framework was proposed for BRS optimization. Specifically, in the outer layer, i.e., the gating control layer, the multigated intersections in BRS were controlled <em>via</em> a multimemory deep Q-network approach to optimize the network traffic distribution. In the inner layer, i.e., the coordinated control layer, local intersection controllers were coordinated by adjusting the dynamic input and output streams of the bottleneck under the guidance of the outer layer controller, which helps balance the traffic pressure within BRS and avoids congestion transferring in the network. Both simulation and field experiments were conducted to verify the performance of the proposed hierarchical framework. Results reveal that the framework can effectively relieve network traffic congestion with decreased queue length and travel time.</div></div>","PeriodicalId":54792,"journal":{"name":"Journal of Intelligent Transportation Systems","volume":"28 6","pages":"Pages 988-1010"},"PeriodicalIF":2.8000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Intelligent Transportation Systems","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/org/science/article/pii/S1547245023001068","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"TRANSPORTATION","Score":null,"Total":0}
引用次数: 0

Abstract

Traffic bottlenecks significantly influence the operation efficiency of large-scale road networks. Developing advanced control strategies for bottleneck optimization is a cost-efficient and critical way to deal with network congestion. However, the state-of-the-art studies on network congestion control focus on the topology level, which may fail to relieve congestion by addressing the root cause of bottleneck. This study proposed a hierarchical control framework for alleviating network traffic bottleneck congestion using vehicle trajectory data. First, the bottleneck-related sub-network (BRS) was identified by tracing vehicle trajectories upstream and downstream of the bottleneck based on the traffic flow propagation. Then, a hierarchical control framework was proposed for BRS optimization. Specifically, in the outer layer, i.e., the gating control layer, the multigated intersections in BRS were controlled via a multimemory deep Q-network approach to optimize the network traffic distribution. In the inner layer, i.e., the coordinated control layer, local intersection controllers were coordinated by adjusting the dynamic input and output streams of the bottleneck under the guidance of the outer layer controller, which helps balance the traffic pressure within BRS and avoids congestion transferring in the network. Both simulation and field experiments were conducted to verify the performance of the proposed hierarchical framework. Results reveal that the framework can effectively relieve network traffic congestion with decreased queue length and travel time.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于车辆轨迹数据的分层控制框架缓解网络交通瓶颈拥塞
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
8.80
自引率
19.40%
发文量
51
审稿时长
15 months
期刊介绍: The Journal of Intelligent Transportation Systems is devoted to scholarly research on the development, planning, management, operation and evaluation of intelligent transportation systems. Intelligent transportation systems are innovative solutions that address contemporary transportation problems. They are characterized by information, dynamic feedback and automation that allow people and goods to move efficiently. They encompass the full scope of information technologies used in transportation, including control, computation and communication, as well as the algorithms, databases, models and human interfaces. The emergence of these technologies as a new pathway for transportation is relatively new. The Journal of Intelligent Transportation Systems is especially interested in research that leads to improved planning and operation of the transportation system through the application of new technologies. The journal is particularly interested in research that adds to the scientific understanding of the impacts that intelligent transportation systems can have on accessibility, congestion, pollution, safety, security, noise, and energy and resource consumption. The journal is inter-disciplinary, and accepts work from fields of engineering, economics, planning, policy, business and management, as well as any other disciplines that contribute to the scientific understanding of intelligent transportation systems. The journal is also multi-modal, and accepts work on intelligent transportation for all forms of ground, air and water transportation. Example topics include the role of information systems in transportation, traffic flow and control, vehicle control, routing and scheduling, traveler response to dynamic information, planning for ITS innovations, evaluations of ITS field operational tests, ITS deployment experiences, automated highway systems, vehicle control systems, diffusion of ITS, and tools/software for analysis of ITS.
期刊最新文献
Adaptive graph convolutional network-based short-term passenger flow prediction for metro Adaptive green split optimization for traffic control with low penetration rate trajectory data Inferring the number of vehicles between trajectory-observed vehicles Accurate detection of vehicle, pedestrian, cyclist and wheelchair from roadside light detection and ranging sensors Evaluating the impacts of vehicle-mounted Variable Message Signs on passing vehicles: implications for protecting roadside incident and service personnel
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1