İdil Işıklı Esener, Onur Kılınç, Burak Urazel, Betül N. Yaman, Demet İ. Algın, Semih Ergin
{"title":"High-Dimension EEG Biometric Authentication Leveraging Sub-Band Cube-Code Representation","authors":"İdil Işıklı Esener, Onur Kılınç, Burak Urazel, Betül N. Yaman, Demet İ. Algın, Semih Ergin","doi":"10.18280/ts.400517","DOIUrl":null,"url":null,"abstract":"Advancements in EEG biometric technologies have been hindered by two persistent challenges: the management of large data sizes and the unreliability of data resulting from various measurement environments. Addressing these challenges, this study introduces a novel methodology termed 'Cube-Code' for cognitive biometric authentication. As a preliminary step, Automatic Artifact Removal (AAR) leveraging wavelet Independent Component Analysis (wICA) is applied to EEG signals. This step transforms the signals into independent sub-components, effectively eliminating the effects of muscle movements and eye blinking. Subsequently, unique 3-Dimensional (3-D) Cube-Codes are generated, each representing an individual subject in the database. Each Cube-Code is constructed by stacking the alpha, beta, and theta sub-band partitions, obtained from each channel during each task, back-to-back. This forms a third-order tensor. The stacking of these three sub-bands within a Cube-Code not only prevents a dimension increase through concatenation but also permits the direct utilization of non-stationary data, bypassing the need for fiducial component detection. Higher-Order Singular Value Decomposition (HOSVD) is then applied to perform a subspace analysis on each Cube-Code, an approach supported by previous literature concerning its effectiveness on 3-D tensors. Upon completion of the decomposition process, a flattening operation is executed to extract lower-dimensional, task-independent feature matrices for each subject. These feature matrices are then employed in five distinct deep learning architectures. The Cube-Code methodology was tested on EEG signals, composed of different tasks, from the PhysioNet EEG Motor Movement/Imagery (EEGMMI) dataset. The results demonstrate an authentication accuracy rate of approximately 98%. In conclusion, the novel Cube-Code methodology provides highly accurate results for subject recognition, delivering a new level of reliability in EEG-based biometric","PeriodicalId":49430,"journal":{"name":"Traitement Du Signal","volume":"65 1","pages":"0"},"PeriodicalIF":1.2000,"publicationDate":"2023-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Traitement Du Signal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18280/ts.400517","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
Advancements in EEG biometric technologies have been hindered by two persistent challenges: the management of large data sizes and the unreliability of data resulting from various measurement environments. Addressing these challenges, this study introduces a novel methodology termed 'Cube-Code' for cognitive biometric authentication. As a preliminary step, Automatic Artifact Removal (AAR) leveraging wavelet Independent Component Analysis (wICA) is applied to EEG signals. This step transforms the signals into independent sub-components, effectively eliminating the effects of muscle movements and eye blinking. Subsequently, unique 3-Dimensional (3-D) Cube-Codes are generated, each representing an individual subject in the database. Each Cube-Code is constructed by stacking the alpha, beta, and theta sub-band partitions, obtained from each channel during each task, back-to-back. This forms a third-order tensor. The stacking of these three sub-bands within a Cube-Code not only prevents a dimension increase through concatenation but also permits the direct utilization of non-stationary data, bypassing the need for fiducial component detection. Higher-Order Singular Value Decomposition (HOSVD) is then applied to perform a subspace analysis on each Cube-Code, an approach supported by previous literature concerning its effectiveness on 3-D tensors. Upon completion of the decomposition process, a flattening operation is executed to extract lower-dimensional, task-independent feature matrices for each subject. These feature matrices are then employed in five distinct deep learning architectures. The Cube-Code methodology was tested on EEG signals, composed of different tasks, from the PhysioNet EEG Motor Movement/Imagery (EEGMMI) dataset. The results demonstrate an authentication accuracy rate of approximately 98%. In conclusion, the novel Cube-Code methodology provides highly accurate results for subject recognition, delivering a new level of reliability in EEG-based biometric
期刊介绍:
The TS provides rapid dissemination of original research in the field of signal processing, imaging and visioning. Since its founding in 1984, the journal has published articles that present original research results of a fundamental, methodological or applied nature. The editorial board welcomes articles on the latest and most promising results of academic research, including both theoretical results and case studies.
The TS welcomes original research papers, technical notes and review articles on various disciplines, including but not limited to:
Signal processing
Imaging
Visioning
Control
Filtering
Compression
Data transmission
Noise reduction
Deconvolution
Prediction
Identification
Classification.