Yigit Tuncel, Toygun Basaklar, Dina Carpenter-Graffy, Umit Ogras
{"title":"A Self-Sustained CPS Design for Reliable Wildfire Monitoring","authors":"Yigit Tuncel, Toygun Basaklar, Dina Carpenter-Graffy, Umit Ogras","doi":"10.1145/3608100","DOIUrl":null,"url":null,"abstract":"Continuous monitoring of areas nearby the electric grid is critical for preventing and early detection of devastating wildfires. Existing wildfire monitoring systems are intermittent and oblivious to local ambient risk factors, resulting in poor wildfire awareness. Ambient sensor suites deployed near the gridlines can increase the monitoring granularity and detection accuracy. However, these sensors must address two challenging and competing objectives at the same time. First, they must remain powered for years without manual maintenance due to their remote locations. Second, they must provide and transmit reliable information if and when a wildfire starts. The first objective requires aggressive energy savings and ambient energy harvesting, while the second requires continuous operation of a range of sensors. To the best of our knowledge, this paper presents the first self-sustained cyber-physical system that dynamically co-optimizes the wildfire detection accuracy and active time of sensors. The proposed approach employs reinforcement learning to train a policy that controls the sensor operations as a function of the environment (i.e., current sensor readings), harvested energy, and battery level. The proposed cyber-physical system is evaluated extensively using real-life temperature, wind, and solar energy harvesting datasets and an open-source wildfire simulator. In long-term (5 years) evaluations, the proposed framework achieves 89% uptime, which is 46% higher than a carefully tuned heuristic approach. At the same time, it averages a 2-minute initial response time, which is at least 2.5× faster than the same heuristic approach. Furthermore, the policy network consumes 0.6 mJ per day on the TI CC2652R microcontroller using TensorFlow Lite for Micro, which is negligible compared to the daily sensor suite energy consumption.","PeriodicalId":50914,"journal":{"name":"ACM Transactions on Embedded Computing Systems","volume":"40 1","pages":"0"},"PeriodicalIF":2.8000,"publicationDate":"2023-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Transactions on Embedded Computing Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3608100","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
引用次数: 0
Abstract
Continuous monitoring of areas nearby the electric grid is critical for preventing and early detection of devastating wildfires. Existing wildfire monitoring systems are intermittent and oblivious to local ambient risk factors, resulting in poor wildfire awareness. Ambient sensor suites deployed near the gridlines can increase the monitoring granularity and detection accuracy. However, these sensors must address two challenging and competing objectives at the same time. First, they must remain powered for years without manual maintenance due to their remote locations. Second, they must provide and transmit reliable information if and when a wildfire starts. The first objective requires aggressive energy savings and ambient energy harvesting, while the second requires continuous operation of a range of sensors. To the best of our knowledge, this paper presents the first self-sustained cyber-physical system that dynamically co-optimizes the wildfire detection accuracy and active time of sensors. The proposed approach employs reinforcement learning to train a policy that controls the sensor operations as a function of the environment (i.e., current sensor readings), harvested energy, and battery level. The proposed cyber-physical system is evaluated extensively using real-life temperature, wind, and solar energy harvesting datasets and an open-source wildfire simulator. In long-term (5 years) evaluations, the proposed framework achieves 89% uptime, which is 46% higher than a carefully tuned heuristic approach. At the same time, it averages a 2-minute initial response time, which is at least 2.5× faster than the same heuristic approach. Furthermore, the policy network consumes 0.6 mJ per day on the TI CC2652R microcontroller using TensorFlow Lite for Micro, which is negligible compared to the daily sensor suite energy consumption.
对电网附近地区的持续监测对于预防和早期发现毁灭性的野火至关重要。现有的野火监测系统是间歇性的,对当地环境的风险因素一无所知,导致对野火的认识不足。部署在网格线附近的环境传感器套件可以提高监测粒度和检测精度。然而,这些传感器必须同时解决两个具有挑战性和竞争性的目标。首先,由于位置偏远,它们必须在没有人工维护的情况下保持供电多年。其次,当野火开始时,他们必须提供和传递可靠的信息。第一个目标需要积极的能源节约和环境能量收集,而第二个目标需要一系列传感器的连续运行。据我们所知,本文提出了第一个自我维持的网络物理系统,该系统可以动态地共同优化野火探测精度和传感器的活动时间。所提出的方法采用强化学习来训练一个策略,该策略将传感器操作作为环境(即当前传感器读数)、收集的能量和电池水平的函数来控制。所提出的网络物理系统使用现实生活中的温度、风和太阳能收集数据集和开源野火模拟器进行了广泛的评估。在长期(5年)评估中,建议的框架达到89%的正常运行时间,比精心调整的启发式方法高46%。同时,它的平均初始响应时间为2分钟,比相同的启发式方法至少快2.5倍。此外,使用TensorFlow Lite for Micro的TI CC2652R微控制器上的策略网络每天消耗0.6 mJ,与日常传感器套件能耗相比,这可以忽略不计。
期刊介绍:
The design of embedded computing systems, both the software and hardware, increasingly relies on sophisticated algorithms, analytical models, and methodologies. ACM Transactions on Embedded Computing Systems (TECS) aims to present the leading work relating to the analysis, design, behavior, and experience with embedded computing systems.