{"title":"WARM-tree: Making Quadtrees Write-efficient and Space-economic on Persistent Memories","authors":"Shin-Ting Wu, Liang-Chi Chen, Po-Chun Huang, Yuan-Hao Chang, Chien-Chung Ho, Wei-Kuan Shih","doi":"10.1145/3608033","DOIUrl":null,"url":null,"abstract":"Recently, the value of data has been widely recognized, which highlights the significance of data-centric computing in diversified application scenarios. In many cases, the data are multidimensional, and the management of multidimensional data often confronts greater challenges in supporting efficient data access operations and guaranteeing the space utilization. On the other hand, while many existing index data structures have been proposed for multidimensional data management, however, their designs are not fully optimized for modern nonvolatile memories, in particular the byte-addressable persistent memories. As a result, they might undergo serious access performance degradation or fail to guarantee space utilization. This observation motivates the redesigning of index data structures for multidimensional point data on modern persistent memories, such as the phase-change memory. In this work, we present the WARM-tree , a m ultidimensional t ree for r educing the w rite a mplification effect, for multidimensional point data. In our evaluation studies, as compared to the bucket PR quadtree and R*-tree, the WARM-tree can provide any worst-case space utilization guarantees in the form of \\(\\frac{m-1}{m}\\) ( m ∈ ℤ^+) and effectively reduces the write traffic of key insertions by up to 48.10% and 85.86%, respectively, at the price of degraded average space utilization and prolonged latency of query operations. This suggests that the WARM-tree is a potential multidimensional index structure for insert-intensive workloads.","PeriodicalId":50914,"journal":{"name":"ACM Transactions on Embedded Computing Systems","volume":"18 1","pages":"0"},"PeriodicalIF":2.8000,"publicationDate":"2023-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Transactions on Embedded Computing Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3608033","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
引用次数: 0
Abstract
Recently, the value of data has been widely recognized, which highlights the significance of data-centric computing in diversified application scenarios. In many cases, the data are multidimensional, and the management of multidimensional data often confronts greater challenges in supporting efficient data access operations and guaranteeing the space utilization. On the other hand, while many existing index data structures have been proposed for multidimensional data management, however, their designs are not fully optimized for modern nonvolatile memories, in particular the byte-addressable persistent memories. As a result, they might undergo serious access performance degradation or fail to guarantee space utilization. This observation motivates the redesigning of index data structures for multidimensional point data on modern persistent memories, such as the phase-change memory. In this work, we present the WARM-tree , a m ultidimensional t ree for r educing the w rite a mplification effect, for multidimensional point data. In our evaluation studies, as compared to the bucket PR quadtree and R*-tree, the WARM-tree can provide any worst-case space utilization guarantees in the form of \(\frac{m-1}{m}\) ( m ∈ ℤ^+) and effectively reduces the write traffic of key insertions by up to 48.10% and 85.86%, respectively, at the price of degraded average space utilization and prolonged latency of query operations. This suggests that the WARM-tree is a potential multidimensional index structure for insert-intensive workloads.
Recently, the value of data has been widely recognized, which highlights the significance of data-centric computing in diversified application scenarios. In many cases, the data are multidimensional, and the management of multidimensional data often confronts greater challenges in supporting efficient data access operations and guaranteeing the space utilization. On the other hand, while many existing index data structures have been proposed for multidimensional data management, however, their designs are not fully optimized for modern nonvolatile memories, in particular the byte-addressable persistent memories. As a result, they might undergo serious access performance degradation or fail to guarantee space utilization. This observation motivates the redesigning of index data structures for multidimensional point data on modern persistent memories, such as the phase-change memory. In this work, we present the WARM-tree , a m ultidimensional t ree for r educing the w rite a mplification effect, for multidimensional point data. In our evaluation studies, as compared to the bucket PR quadtree and R*-tree, the WARM-tree can provide any worst-case space utilization guarantees in the form of \(\frac{m-1}{m}\) ( m ∈ ℤ^+) and effectively reduces the write traffic of key insertions by up to 48.10% and 85.86%, respectively, at the price of degraded average space utilization and prolonged latency of query operations. This suggests that the WARM-tree is a potential multidimensional index structure for insert-intensive workloads.
期刊介绍:
The design of embedded computing systems, both the software and hardware, increasingly relies on sophisticated algorithms, analytical models, and methodologies. ACM Transactions on Embedded Computing Systems (TECS) aims to present the leading work relating to the analysis, design, behavior, and experience with embedded computing systems.