A Second-order Scheme for the Generalized Time-fractional Burgers' Equation

IF 1.9 4区 工程技术 Q3 ENGINEERING, MECHANICAL Journal of Computational and Nonlinear Dynamics Pub Date : 2023-10-16 DOI:10.1115/1.4063792
Reetika Chawla, Devendra Kumar, Satpal Singh
{"title":"A Second-order Scheme for the Generalized Time-fractional Burgers' Equation","authors":"Reetika Chawla, Devendra Kumar, Satpal Singh","doi":"10.1115/1.4063792","DOIUrl":null,"url":null,"abstract":"Abstract A second-order numerical scheme is proposed to solve the generalized time-fractional Burgers' equation. Time-fractional derivative is considered in the Caputo sense. First, the quasilinearization process is used to linearize the time-fractional Burgers'; equation, which gives a sequence of linear partial differential equations (PDEs). The Crank-Nicolson scheme is used to discretize the sequence of PDEs in the temporal direction, followed by the central difference formulae for both the first and second-order spatial derivatives. The established error bounds (in the $L^2-$norm) obtained through the meticulous theoretical analysis show that the method is the second-order convergent in both space and time. The technique is also shown to be conditionally stable. Some numerical experiments are presented to confirm the theoretical results.","PeriodicalId":54858,"journal":{"name":"Journal of Computational and Nonlinear Dynamics","volume":"184 1","pages":"0"},"PeriodicalIF":1.9000,"publicationDate":"2023-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Computational and Nonlinear Dynamics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/1.4063792","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Abstract A second-order numerical scheme is proposed to solve the generalized time-fractional Burgers' equation. Time-fractional derivative is considered in the Caputo sense. First, the quasilinearization process is used to linearize the time-fractional Burgers'; equation, which gives a sequence of linear partial differential equations (PDEs). The Crank-Nicolson scheme is used to discretize the sequence of PDEs in the temporal direction, followed by the central difference formulae for both the first and second-order spatial derivatives. The established error bounds (in the $L^2-$norm) obtained through the meticulous theoretical analysis show that the method is the second-order convergent in both space and time. The technique is also shown to be conditionally stable. Some numerical experiments are presented to confirm the theoretical results.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
广义时间分数型Burgers方程的二阶格式
提出了一种求解广义时间分数型Burgers方程的二阶数值格式。在卡普托意义上考虑时间分数阶导数。首先,采用拟线性化方法对时间分数型Burgers′进行线性化处理;方程,给出了一系列线性偏微分方程(PDEs)。采用Crank-Nicolson格式对时间方向上的偏微分方程序列进行离散化,然后给出一阶和二阶空间导数的中心差分公式。通过细致的理论分析得到了建立的误差界(在L^2-$范数内),表明该方法在空间和时间上都是二阶收敛的。该技术也被证明是有条件稳定的。通过数值实验验证了理论结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
4.00
自引率
10.00%
发文量
72
审稿时长
6-12 weeks
期刊介绍: The purpose of the Journal of Computational and Nonlinear Dynamics is to provide a medium for rapid dissemination of original research results in theoretical as well as applied computational and nonlinear dynamics. The journal serves as a forum for the exchange of new ideas and applications in computational, rigid and flexible multi-body system dynamics and all aspects (analytical, numerical, and experimental) of dynamics associated with nonlinear systems. The broad scope of the journal encompasses all computational and nonlinear problems occurring in aeronautical, biological, electrical, mechanical, physical, and structural systems.
期刊最新文献
Energy Transfer and Dissipation in Combined-Stiffness Nonlinear Energy Sink Systems Synchronization of a Class of Nonlinear Systems With and Without Uncertainty Using State Feedback and Extended Kalman Filter Based Control Scheme Optimal Control of Mechanical Systems Based On Path-Fitted Variational Integrators Motor Bearing Fault Diagnosis in an Industrial Robot Under Complex Variable Speed Conditions A Computational Conformal Geometry Approach to Calculate the Large Deformations of Plates/shells with Arbitrary Shapes
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1