Run-Time Prevention of Software Integration Failures of Machine Learning APIs

IF 2.2 Q2 COMPUTER SCIENCE, SOFTWARE ENGINEERING Proceedings of the ACM on Programming Languages Pub Date : 2023-10-16 DOI:10.1145/3622806
Chengcheng Wan, Yuhan Liu, Kuntai Du, Henry Hoffmann, Junchen Jiang, Michael Maire, Shan Lu
{"title":"Run-Time Prevention of Software Integration Failures of Machine Learning APIs","authors":"Chengcheng Wan, Yuhan Liu, Kuntai Du, Henry Hoffmann, Junchen Jiang, Michael Maire, Shan Lu","doi":"10.1145/3622806","DOIUrl":null,"url":null,"abstract":"Due to the under-specified interfaces, developers face challenges in correctly integrating machine learning (ML) APIs in software. Even when the ML API and the software are well designed on their own, the resulting application misbehaves when the API output is incompatible with the software. It is desirable to have an adapter that converts ML API output at runtime to better fit the software need and prevent integration failures. In this paper, we conduct an empirical study to understand ML API integration problems in real-world applications. Guided by this study, we present SmartGear, a tool that automatically detects and converts mismatching or incorrect ML API output at run time, serving as a middle layer between ML API and software. Our evaluation on a variety of open-source applications shows that SmartGear detects 70% incompatible API outputs and prevents 67% potential integration failures, outperforming alternative solutions.","PeriodicalId":20697,"journal":{"name":"Proceedings of the ACM on Programming Languages","volume":"85 1","pages":"0"},"PeriodicalIF":2.2000,"publicationDate":"2023-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the ACM on Programming Languages","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3622806","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, SOFTWARE ENGINEERING","Score":null,"Total":0}
引用次数: 0

Abstract

Due to the under-specified interfaces, developers face challenges in correctly integrating machine learning (ML) APIs in software. Even when the ML API and the software are well designed on their own, the resulting application misbehaves when the API output is incompatible with the software. It is desirable to have an adapter that converts ML API output at runtime to better fit the software need and prevent integration failures. In this paper, we conduct an empirical study to understand ML API integration problems in real-world applications. Guided by this study, we present SmartGear, a tool that automatically detects and converts mismatching or incorrect ML API output at run time, serving as a middle layer between ML API and software. Our evaluation on a variety of open-source applications shows that SmartGear detects 70% incompatible API outputs and prevents 67% potential integration failures, outperforming alternative solutions.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
机器学习api软件集成故障的运行时预防
由于未指定的接口,开发人员在正确地将机器学习(ML) api集成到软件中面临挑战。即使ML API和软件本身都设计得很好,当API输出与软件不兼容时,最终的应用程序也会出现错误行为。希望有一个适配器在运行时转换ML API输出,以更好地适应软件需求并防止集成失败。在本文中,我们进行了一项实证研究,以了解现实应用中的ML API集成问题。在这项研究的指导下,我们提出了SmartGear,一个在运行时自动检测和转换不匹配或不正确的ML API输出的工具,作为ML API和软件之间的中间层。我们对各种开源应用程序的评估表明,SmartGear可以检测到70%的不兼容API输出,并防止67%的潜在集成故障,优于其他解决方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Proceedings of the ACM on Programming Languages
Proceedings of the ACM on Programming Languages Engineering-Safety, Risk, Reliability and Quality
CiteScore
5.20
自引率
22.20%
发文量
192
期刊最新文献
ReLU Hull Approximation An Axiomatic Basis for Computer Programming on the Relaxed Arm-A Architecture: The AxSL Logic The Essence of Generalized Algebraic Data Types Explicit Effects and Effect Constraints in ReML Indexed Types for a Statically Safe WebAssembly
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1