{"title":"Hybrid conservative central/WENO finite difference scheme for two-dimensional detonation problems","authors":"Nasreddine Bouguellab, Smail Khalfallah, Boubakr Zebiri, Nassim Brahmi","doi":"10.1080/15502287.2023.2268062","DOIUrl":null,"url":null,"abstract":"AbstractIn the present work, a hybrid finite difference scheme is proposed and tested for the study of two-dimensional detonation problems. The hybrid scheme consists of a fifth-order weighted essentially nonoscillatory (WENO) method for discontinuous regions and a fourth or sixth-order robust conservative central finite difference scheme for the remaining domain. An arbitrary shock sensor is used to identify the discontinuities. The proposed shock sensor is based on the absolute value of the density gradient with an arbitrary threshold computed at each time step using a fast image segmentation technique. The sensor is complemented with a Ducros sensor to avoid the selection of vortices as discontinuities. The hybrid scheme is tested for several benchmark examples, including a two-dimensional transverse detonation wave, detonation wave diffraction, and a multiple obstacles test case. The obtained results show that the proposed sensor detects discontinuities adequately and the hybrid schemes give the same results as the fifth-order WENO in faster computational time.Keywords: WENOcentral finite differencefinite difference methodRunge-Kuttadetonationhybrid schemereactive Euler equationsshock sensor Disclosure statementNo potential conflict of interest was reported by the authors.","PeriodicalId":315058,"journal":{"name":"International Journal for Computational Methods in Engineering Science and Mechanics","volume":"249 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal for Computational Methods in Engineering Science and Mechanics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/15502287.2023.2268062","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
AbstractIn the present work, a hybrid finite difference scheme is proposed and tested for the study of two-dimensional detonation problems. The hybrid scheme consists of a fifth-order weighted essentially nonoscillatory (WENO) method for discontinuous regions and a fourth or sixth-order robust conservative central finite difference scheme for the remaining domain. An arbitrary shock sensor is used to identify the discontinuities. The proposed shock sensor is based on the absolute value of the density gradient with an arbitrary threshold computed at each time step using a fast image segmentation technique. The sensor is complemented with a Ducros sensor to avoid the selection of vortices as discontinuities. The hybrid scheme is tested for several benchmark examples, including a two-dimensional transverse detonation wave, detonation wave diffraction, and a multiple obstacles test case. The obtained results show that the proposed sensor detects discontinuities adequately and the hybrid schemes give the same results as the fifth-order WENO in faster computational time.Keywords: WENOcentral finite differencefinite difference methodRunge-Kuttadetonationhybrid schemereactive Euler equationsshock sensor Disclosure statementNo potential conflict of interest was reported by the authors.