{"title":"On the universal approximation property of radial basis function neural networks","authors":"Aysu Ismayilova, Muhammad Ismayilov","doi":"10.1007/s10472-023-09901-x","DOIUrl":null,"url":null,"abstract":"<div><p>In this paper we consider a new class of RBF (Radial Basis Function) neural networks, in which smoothing factors are replaced with shifts. We prove under certain conditions on the activation function that these networks are capable of approximating any continuous multivariate function on any compact subset of the <i>d</i>-dimensional Euclidean space. For RBF networks with finitely many fixed centroids we describe conditions guaranteeing approximation with arbitrary precision.</p></div>","PeriodicalId":7971,"journal":{"name":"Annals of Mathematics and Artificial Intelligence","volume":"92 3","pages":"691 - 701"},"PeriodicalIF":1.2000,"publicationDate":"2023-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of Mathematics and Artificial Intelligence","FirstCategoryId":"94","ListUrlMain":"https://link.springer.com/article/10.1007/s10472-023-09901-x","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
In this paper we consider a new class of RBF (Radial Basis Function) neural networks, in which smoothing factors are replaced with shifts. We prove under certain conditions on the activation function that these networks are capable of approximating any continuous multivariate function on any compact subset of the d-dimensional Euclidean space. For RBF networks with finitely many fixed centroids we describe conditions guaranteeing approximation with arbitrary precision.
期刊介绍:
Annals of Mathematics and Artificial Intelligence presents a range of topics of concern to scholars applying quantitative, combinatorial, logical, algebraic and algorithmic methods to diverse areas of Artificial Intelligence, from decision support, automated deduction, and reasoning, to knowledge-based systems, machine learning, computer vision, robotics and planning.
The journal features collections of papers appearing either in volumes (400 pages) or in separate issues (100-300 pages), which focus on one topic and have one or more guest editors.
Annals of Mathematics and Artificial Intelligence hopes to influence the spawning of new areas of applied mathematics and strengthen the scientific underpinnings of Artificial Intelligence.