Towards Better Semantics Exploration for Browser Fuzzing

IF 2.2 Q2 COMPUTER SCIENCE, SOFTWARE ENGINEERING Proceedings of the ACM on Programming Languages Pub Date : 2023-10-16 DOI:10.1145/3622819
Chijin Zhou, Quan Zhang, Lihua Guo, Mingzhe Wang, Yu Jiang, Qing Liao, Zhiyong Wu, Shanshan Li, Bin Gu
{"title":"Towards Better Semantics Exploration for Browser Fuzzing","authors":"Chijin Zhou, Quan Zhang, Lihua Guo, Mingzhe Wang, Yu Jiang, Qing Liao, Zhiyong Wu, Shanshan Li, Bin Gu","doi":"10.1145/3622819","DOIUrl":null,"url":null,"abstract":"Web browsers exhibit rich semantics that enable a plethora of web-based functionalities. However, these intricate semantics present significant challenges for the implementation and testing of browsers. For example, fuzzing, a widely adopted testing technique, typically relies on handwritten context-free grammars (CFGs) for automatically generating inputs. However, these CFGs fall short in adequately modeling the complex semantics of browsers, resulting in generated inputs that cover only a portion of the semantics and are prone to semantic errors. In this paper, we present SaGe, an automated method that enhances browser fuzzing through the use of production-context sensitive grammars (PCSGs) incorporating semantic information. Our approach begins by extracting a rudimentary CFG from W3C standards and iteratively enhancing it to create a PCSG. The resulting PCSG enables our fuzzer to generate inputs that explore a broader range of browser semantics with a higher proportion of semantically-correct inputs. To evaluate the efficacy of SaGe, we conducted 24-hour fuzzing campaigns on mainstream browsers, including Chrome, Safari, and Firefox. Our approach demonstrated better performance compared to existing browser fuzzers, with a 6.03%-277.80% improvement in edge coverage, a 3.56%-161.71% boost in semantic correctness rate, twice the number of bugs discovered. Moreover, we identified 62 bugs across the three browsers, with 40 confirmed and 10 assigned CVEs.","PeriodicalId":20697,"journal":{"name":"Proceedings of the ACM on Programming Languages","volume":"35 1","pages":"0"},"PeriodicalIF":2.2000,"publicationDate":"2023-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the ACM on Programming Languages","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3622819","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, SOFTWARE ENGINEERING","Score":null,"Total":0}
引用次数: 0

Abstract

Web browsers exhibit rich semantics that enable a plethora of web-based functionalities. However, these intricate semantics present significant challenges for the implementation and testing of browsers. For example, fuzzing, a widely adopted testing technique, typically relies on handwritten context-free grammars (CFGs) for automatically generating inputs. However, these CFGs fall short in adequately modeling the complex semantics of browsers, resulting in generated inputs that cover only a portion of the semantics and are prone to semantic errors. In this paper, we present SaGe, an automated method that enhances browser fuzzing through the use of production-context sensitive grammars (PCSGs) incorporating semantic information. Our approach begins by extracting a rudimentary CFG from W3C standards and iteratively enhancing it to create a PCSG. The resulting PCSG enables our fuzzer to generate inputs that explore a broader range of browser semantics with a higher proportion of semantically-correct inputs. To evaluate the efficacy of SaGe, we conducted 24-hour fuzzing campaigns on mainstream browsers, including Chrome, Safari, and Firefox. Our approach demonstrated better performance compared to existing browser fuzzers, with a 6.03%-277.80% improvement in edge coverage, a 3.56%-161.71% boost in semantic correctness rate, twice the number of bugs discovered. Moreover, we identified 62 bugs across the three browsers, with 40 confirmed and 10 assigned CVEs.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
面向浏览器模糊测试更好的语义探索
Web浏览器提供丰富的语义,支持大量基于Web的功能。然而,这些复杂的语义给浏览器的实现和测试带来了巨大的挑战。例如,模糊测试是一种广泛采用的测试技术,它通常依赖于手写的上下文无关语法(cfg)来自动生成输入。然而,这些cfg在充分建模浏览器的复杂语义方面存在不足,导致生成的输入只覆盖了一部分语义,并且容易出现语义错误。在本文中,我们提出了SaGe,这是一种通过使用包含语义信息的生产上下文敏感语法(PCSGs)来增强浏览器模糊测试的自动化方法。我们的方法首先从W3C标准中提取基本的CFG,并对其进行迭代增强以创建PCSG。由此产生的PCSG使我们的模糊器能够生成能够探索更广泛的浏览器语义的输入,并且具有更高比例的语义正确输入。为了评估SaGe的有效性,我们在主流浏览器(包括Chrome、Safari和Firefox)上进行了24小时的模糊测试。与现有的浏览器模糊器相比,我们的方法表现出更好的性能,边缘覆盖率提高了6.03%-277.80%,语义正确率提高了3.56%-161.71%,发现的错误数量增加了一倍。此外,我们在三个浏览器中发现了62个bug,其中40个已确认,10个已分配cve。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Proceedings of the ACM on Programming Languages
Proceedings of the ACM on Programming Languages Engineering-Safety, Risk, Reliability and Quality
CiteScore
5.20
自引率
22.20%
发文量
192
期刊最新文献
ReLU Hull Approximation An Axiomatic Basis for Computer Programming on the Relaxed Arm-A Architecture: The AxSL Logic The Essence of Generalized Algebraic Data Types Explicit Effects and Effect Constraints in ReML Indexed Types for a Statically Safe WebAssembly
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1