Probing the REDOX effect of helical tetraspirobenzene on nonlinear optical properties

IF 1.6 4区 化学 Q4 CHEMISTRY, PHYSICAL Molecular Physics Pub Date : 2023-10-16 DOI:10.1080/00268976.2023.2268745
Ye-Xuan Li, Zhong-Min Su, Hong-Liang Xu
{"title":"Probing the REDOX effect of helical tetraspirobenzene on nonlinear optical properties","authors":"Ye-Xuan Li, Zhong-Min Su, Hong-Liang Xu","doi":"10.1080/00268976.2023.2268745","DOIUrl":null,"url":null,"abstract":"AbstractThe helical structure is a classical framework to design high-performance organic electro-optical materials. In this work, the structure-property’s relationships of helical tetraspirobenzene (1) and its oxidation (12+) and reduction (12–) products are explored. The results show that the redox brings some distinctive changes in their geometric structure and electronic property, which regulate the first hyperpolarisability (βtot). Among these structures, the 12– has the largest βtot value of 4.2 × 104, which is greatly larger than 2.0 × 102 a.u. of. 12+. Therefore, the reduction effect is more obvious than the oxidation effect. Furthermore, the UV-Vis absorption spectrum also proves this phenomenon: the oxidation product has a new red-shifted absorption peak (571 nm) and the reduction product has two new red-shifted absorption peaks (577 and 797 nm). We hope the present work can provide theoretical guidance for the search for high-performance nonlinear optical materials by using the redox effect.KEYWORDS: TetraspirobenzeneRedoxNLO property AcknowledgementsYe-Xuan Li: Data curation, Writing – original draft, Writing – review & editing. Hong-Liang Xu: Conceptualisation, Methodology, Writing – review & editing. Zhong-Min Su: Supervision.Disclosure statementNo potential conflict of interest was reported by the author(s).Data availability statementData will be made available on request.Additional informationFundingWe gratefully acknowledge the Natural Science Foundation of Science and Technology Department of Jilin Province [20230101043JC].","PeriodicalId":18817,"journal":{"name":"Molecular Physics","volume":"81 1","pages":"0"},"PeriodicalIF":1.6000,"publicationDate":"2023-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/00268976.2023.2268745","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

AbstractThe helical structure is a classical framework to design high-performance organic electro-optical materials. In this work, the structure-property’s relationships of helical tetraspirobenzene (1) and its oxidation (12+) and reduction (12–) products are explored. The results show that the redox brings some distinctive changes in their geometric structure and electronic property, which regulate the first hyperpolarisability (βtot). Among these structures, the 12– has the largest βtot value of 4.2 × 104, which is greatly larger than 2.0 × 102 a.u. of. 12+. Therefore, the reduction effect is more obvious than the oxidation effect. Furthermore, the UV-Vis absorption spectrum also proves this phenomenon: the oxidation product has a new red-shifted absorption peak (571 nm) and the reduction product has two new red-shifted absorption peaks (577 and 797 nm). We hope the present work can provide theoretical guidance for the search for high-performance nonlinear optical materials by using the redox effect.KEYWORDS: TetraspirobenzeneRedoxNLO property AcknowledgementsYe-Xuan Li: Data curation, Writing – original draft, Writing – review & editing. Hong-Liang Xu: Conceptualisation, Methodology, Writing – review & editing. Zhong-Min Su: Supervision.Disclosure statementNo potential conflict of interest was reported by the author(s).Data availability statementData will be made available on request.Additional informationFundingWe gratefully acknowledge the Natural Science Foundation of Science and Technology Department of Jilin Province [20230101043JC].
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
探讨螺旋四螺苯氧化还原对非线性光学性质的影响
摘要螺旋结构是设计高性能有机光电材料的经典框架。本文探讨了螺旋四螺基苯(1)及其氧化(12+)和还原(12 -)产物的结构-性能关系。结果表明,氧化还原使其几何结构和电子性质发生了明显的变化,从而调节了第一超极化率(βtot)。其中,12 -的βtot值最大,为4.2 × 104,远大于2.0 × 102 a.u.。12 +。因此,还原效果比氧化效果更明显。紫外可见吸收光谱也证明了这一现象:氧化产物有一个新的红移吸收峰(571 nm),还原产物有两个新的红移吸收峰(577和797 nm)。希望本研究能为利用氧化还原效应寻找高性能非线性光学材料提供理论指导。关键词:四吡苯甲醚nlo属性李晔选:数据管理,写作-原稿,写作-评审与编辑。徐洪亮:概念、方法论、写作——综述与编辑。苏忠民:监督。披露声明作者未报告潜在的利益冲突。数据可用性声明数据可应要求提供。我们感谢吉林省科技厅自然科学基金[20230101043JC]。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Molecular Physics
Molecular Physics 物理-物理:原子、分子和化学物理
CiteScore
3.60
自引率
5.90%
发文量
269
审稿时长
2 months
期刊介绍: Molecular Physics is a well-established international journal publishing original high quality papers in chemical physics and physical chemistry. The journal covers all experimental and theoretical aspects of molecular science, from electronic structure, molecular dynamics, spectroscopy and reaction kinetics to condensed matter, surface science, and statistical mechanics of simple and complex fluids. Contributions include full papers, preliminary communications, research notes and invited topical review articles.
期刊最新文献
Transport properties of the square-well fluid from molecular dynamics simulation Ion molecule reaction dynamics for disentangling competing reactive pathways Unlocking the potential of solvent polarity in directing ESIPT pathways of HHMB with dual hydrogen bond acceptors: a DFT/TD-DFT study Screening novel XY1b-based organic dyes by modifying electron-assisted acceptors for dye-sensitised solar cells: a theoretical analysis High-pressure study on novel structure, mechanical properties and high energy density of RuN 4
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1