Engineering Saccharomyces cerevisiae for efficient production of recombinant proteins

Shuo Yang , Liyun Song , Jing Wang , Jianzhi Zhao , Hongting Tang , Xiaoming Bao
{"title":"Engineering Saccharomyces cerevisiae for efficient production of recombinant proteins","authors":"Shuo Yang ,&nbsp;Liyun Song ,&nbsp;Jing Wang ,&nbsp;Jianzhi Zhao ,&nbsp;Hongting Tang ,&nbsp;Xiaoming Bao","doi":"10.1016/j.engmic.2023.100122","DOIUrl":null,"url":null,"abstract":"<div><p><em>Saccharomyces cerevisiae</em> is an excellent microbial cell factory for producing valuable recombinant proteins because of its fast growth rate, robustness, biosafety, ease of operability via mature genomic modification technologies, and the presence of a conserved post-translational modification pathway among eukaryotic organisms. However, meeting industrial and market requirements with the current low microbial production of recombinant proteins can be challenging. To address this issue, numerous efforts have been made to enhance the ability of yeast cell factories to efficiently produce proteins. In this review, we provide an overview of recent advances in <em>S. cerevisiae</em> engineering to improve recombinant protein production. This review focuses on the strategies that enhance protein production by regulating transcription through promoter engineering, codon optimization, and expression system optimization. Additionally, we describe modifications to the secretory pathway, including engineered protein translocation, protein folding, glycosylation modification, and vesicle trafficking. Furthermore, we discuss global metabolic pathway optimization and other relevant strategies, such as the disruption of protein degradation, cell wall engineering, and random mutagenesis. Finally, we provide an outlook on the developmental trends in this field, offering insights into future directions for improving recombinant protein production in <em>S. cerevisiae</em>.</p></div>","PeriodicalId":100478,"journal":{"name":"Engineering Microbiology","volume":"4 1","pages":"Article 100122"},"PeriodicalIF":0.0000,"publicationDate":"2023-10-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2667370323000541/pdfft?md5=09024df4a0818d7b3b48953b72932856&pid=1-s2.0-S2667370323000541-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Engineering Microbiology","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2667370323000541","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Saccharomyces cerevisiae is an excellent microbial cell factory for producing valuable recombinant proteins because of its fast growth rate, robustness, biosafety, ease of operability via mature genomic modification technologies, and the presence of a conserved post-translational modification pathway among eukaryotic organisms. However, meeting industrial and market requirements with the current low microbial production of recombinant proteins can be challenging. To address this issue, numerous efforts have been made to enhance the ability of yeast cell factories to efficiently produce proteins. In this review, we provide an overview of recent advances in S. cerevisiae engineering to improve recombinant protein production. This review focuses on the strategies that enhance protein production by regulating transcription through promoter engineering, codon optimization, and expression system optimization. Additionally, we describe modifications to the secretory pathway, including engineered protein translocation, protein folding, glycosylation modification, and vesicle trafficking. Furthermore, we discuss global metabolic pathway optimization and other relevant strategies, such as the disruption of protein degradation, cell wall engineering, and random mutagenesis. Finally, we provide an outlook on the developmental trends in this field, offering insights into future directions for improving recombinant protein production in S. cerevisiae.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
改造酿酒酵母,高效生产重组蛋白质
酿酒酵母具有生长速度快、坚固耐用、生物安全性高、通过成熟的基因组修饰技术易于操作以及在真核生物中存在保守的翻译后修饰途径等特点,是生产有价值的重组蛋白的绝佳微生物细胞工厂。然而,以目前较低的微生物生产重组蛋白来满足工业和市场需求可能具有挑战性。为了解决这个问题,人们做出了许多努力来提高酵母细胞工厂高效生产蛋白质的能力。在这篇综述中,我们概述了为提高重组蛋白产量而进行的酵母工程学研究的最新进展。本综述重点介绍通过启动子工程、密码子优化和表达系统优化来调节转录,从而提高蛋白质产量的策略。此外,我们还介绍了对分泌途径的改造,包括工程化蛋白质转运、蛋白质折叠、糖基化修饰和囊泡运输。此外,我们还讨论了全局代谢途径优化和其他相关策略,如破坏蛋白质降解、细胞壁工程和随机诱变。最后,我们对这一领域的发展趋势进行了展望,为改进 S. cerevisiae 重组蛋白生产的未来方向提供了见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
3.90
自引率
0.00%
发文量
0
期刊最新文献
Exploring interspecific interaction variability in microbiota: A review Proactive monitoring of changes in the microbial community structure in wastewater treatment bioreactors using phospholipid fatty acid analysis Immobilization of Thermomyces lanuginosus lipase on metal-organic frameworks and investigation of their catalytic properties and stability The way to uncovering and utilizing marine microbial resources Biofuel production from lignocellulose via thermophile-based consolidated bioprocessing
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1