{"title":"Double stabilizations and convergence analysis of a second-order linear numerical scheme for the nonlocal Cahn-Hilliard equation","authors":"Xiao Li, Zhonghua Qiao, Cheng Wang","doi":"10.1007/s11425-022-2036-8","DOIUrl":null,"url":null,"abstract":"In this paper, we study a second-order accurate and linear numerical scheme for the nonlocal Cahn-Hilliard equation. The scheme is established by combining a modified Crank-Nicolson approximation and the Adams-Bashforth extrapolation for the temporal discretization, and by applying the Fourier spectral collocation to the spatial discretization. In addition, two stabilization terms in different forms are added for the sake of the numerical stability. We conduct a complete convergence analysis by using the higher-order consistency estimate for the numerical scheme, combined with the rough error estimate and the refined estimate. By regarding the numerical solution as a small perturbation of the exact solution, we are able to justify the discrete ℓ∞ bound of the numerical solution, as a result of the rough error estimate. Subsequently, the refined error estimate is derived to obtain the optimal rate of convergence, following the established ℓ∞ bound of the numerical solution. Moreover, the energy stability is also rigorously proved with respect to a modified energy. The proposed scheme can be viewed as the generalization of the second-order scheme presented in an earlier work, and the energy stability estimate has greatly improved the corresponding result therein.","PeriodicalId":54444,"journal":{"name":"Science China-Mathematics","volume":null,"pages":null},"PeriodicalIF":1.4000,"publicationDate":"2023-02-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science China-Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s11425-022-2036-8","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 1
Abstract
In this paper, we study a second-order accurate and linear numerical scheme for the nonlocal Cahn-Hilliard equation. The scheme is established by combining a modified Crank-Nicolson approximation and the Adams-Bashforth extrapolation for the temporal discretization, and by applying the Fourier spectral collocation to the spatial discretization. In addition, two stabilization terms in different forms are added for the sake of the numerical stability. We conduct a complete convergence analysis by using the higher-order consistency estimate for the numerical scheme, combined with the rough error estimate and the refined estimate. By regarding the numerical solution as a small perturbation of the exact solution, we are able to justify the discrete ℓ∞ bound of the numerical solution, as a result of the rough error estimate. Subsequently, the refined error estimate is derived to obtain the optimal rate of convergence, following the established ℓ∞ bound of the numerical solution. Moreover, the energy stability is also rigorously proved with respect to a modified energy. The proposed scheme can be viewed as the generalization of the second-order scheme presented in an earlier work, and the energy stability estimate has greatly improved the corresponding result therein.
期刊介绍:
Science China Mathematics is committed to publishing high-quality, original results in both basic and applied research. It presents reviews that summarize representative results and achievements in a particular topic or an area, comment on the current state of research, or advise on research directions. In addition, the journal features research papers that report on important original results in all areas of mathematics as well as brief reports that present information in a timely manner on the latest important results.