{"title":"Musculoskeletal ultrasound: a technical and historical perspective","authors":"Ronald Steven Adler","doi":"10.15557/jou.2023.0027","DOIUrl":null,"url":null,"abstract":"During the past four decades, musculoskeletal ultrasound has become popular as an imaging modality due to its low cost, accessibility, and lack of ionizing radiation. The development of ultrasound technology was possible in large part due to concomitant advances in both solid-state electronics and signal processing. The invention of the transistor and digital computer in the late 1940s was integral in its development. Moore’s prediction that the number of microprocessors on a chip would grow exponentially, resulting in progressive miniaturization in chip design and therefore increased computational power, added to these capabilities. The development of musculoskeletal ultrasound has paralleled technical advances in diagnostic ultrasound. The appearance of a large variety of transducer capabilities and rapid image processing along with the abil- ity to assess vascularity and tissue properties has expanded and continues to expand the role of musculo- skeletal ultrasound. It should also be noted that these developments have in large part been due to a number of individuals who had the insight to see the potential applications of this developing technology to a host of relevant clinical musculoskeletal problems. Exquisite high-resolution images of both deep and small super- ficial musculoskeletal anatomy, assessment of vascularity on a capillary level and tissue mechanical proper- ties can be obtained. Ultrasound has also been recognized as the method of choice to perform a large variety of interventional procedures. A brief review of these technical developments, the timeline over which these improvements occurred, and the impact on musculoskeletal ultrasound is presented below.","PeriodicalId":45612,"journal":{"name":"Journal of Ultrasonography","volume":"67 1","pages":"0"},"PeriodicalIF":1.3000,"publicationDate":"2023-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Ultrasonography","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15557/jou.2023.0027","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
引用次数: 0
Abstract
During the past four decades, musculoskeletal ultrasound has become popular as an imaging modality due to its low cost, accessibility, and lack of ionizing radiation. The development of ultrasound technology was possible in large part due to concomitant advances in both solid-state electronics and signal processing. The invention of the transistor and digital computer in the late 1940s was integral in its development. Moore’s prediction that the number of microprocessors on a chip would grow exponentially, resulting in progressive miniaturization in chip design and therefore increased computational power, added to these capabilities. The development of musculoskeletal ultrasound has paralleled technical advances in diagnostic ultrasound. The appearance of a large variety of transducer capabilities and rapid image processing along with the abil- ity to assess vascularity and tissue properties has expanded and continues to expand the role of musculo- skeletal ultrasound. It should also be noted that these developments have in large part been due to a number of individuals who had the insight to see the potential applications of this developing technology to a host of relevant clinical musculoskeletal problems. Exquisite high-resolution images of both deep and small super- ficial musculoskeletal anatomy, assessment of vascularity on a capillary level and tissue mechanical proper- ties can be obtained. Ultrasound has also been recognized as the method of choice to perform a large variety of interventional procedures. A brief review of these technical developments, the timeline over which these improvements occurred, and the impact on musculoskeletal ultrasound is presented below.