S. Muthukaruppasamy, K. Sarada, Priya R. Patil, R. Dharmaprakash
{"title":"A Symmetric Multi-Level Cascaded H-Bridge Inverter for Renewable Energy Integration","authors":"S. Muthukaruppasamy, K. Sarada, Priya R. Patil, R. Dharmaprakash","doi":"10.37391/ijeer.110409","DOIUrl":null,"url":null,"abstract":"The advanced multi-level cascaded H-Bridge inverter system described in this paper is novel and intended for effective integration of renewable energy sources. Phase-displacement pulse width modulation (PD-PWM) control has been employed in the proposed five-level topology to produce output voltage with better quality. The system incorporates proficient filtering methods with a low total harmonic distortion (THD) desired outcome. With a stable output of 230 V at 50 Hz and a 2.3 kW capacity, the inverter system has been satisfied the exacting IEEE 519 standards for power quality. The MATLAB/Simulink is implemented to simulate and model the entire system, exhibiting its superior performance in terms of harmonic reduction and grid compliance. The innovative design offers a dependable respond to for integrating renewable energy, ensuring smooth and high-quality power injection into the grid.","PeriodicalId":491088,"journal":{"name":"International journal of electrical & electronics research","volume":"50 4","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International journal of electrical & electronics research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.37391/ijeer.110409","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
The advanced multi-level cascaded H-Bridge inverter system described in this paper is novel and intended for effective integration of renewable energy sources. Phase-displacement pulse width modulation (PD-PWM) control has been employed in the proposed five-level topology to produce output voltage with better quality. The system incorporates proficient filtering methods with a low total harmonic distortion (THD) desired outcome. With a stable output of 230 V at 50 Hz and a 2.3 kW capacity, the inverter system has been satisfied the exacting IEEE 519 standards for power quality. The MATLAB/Simulink is implemented to simulate and model the entire system, exhibiting its superior performance in terms of harmonic reduction and grid compliance. The innovative design offers a dependable respond to for integrating renewable energy, ensuring smooth and high-quality power injection into the grid.