{"title":"ВЫБОР ПОТЕНЦИАЛА МЕЖАТОМНОГО ВЗАИМОДЕЙСТВИЯ ДЛЯ МОДЕЛИРОВАНИЯ СИСТЕМЫ ТИТАН-УГЛЕРОД","authors":"Е.А. Рожнова, Л.Р. Сафина, Ю.А. Баимова","doi":"10.25712/astu.1811-1416.2023.02.007","DOIUrl":null,"url":null,"abstract":"Анализ применимости межатомных потенциалов для решения задач различной направленности представляет большой интерес, поскольку именно межатомный потенциал определяет результат моделирования. В данной работе методом молекулярной динамики исследуется взаимодействие листа графена с наночастицей титана с использованием двух разных межатомных потенциалов – потенциала Морзе и потенциала Терсоффа. Следует отметить, что потенциал Терсоффа описывает все три вида взаимодействий в системе (С-С, С-Ti, Ti-Ti), а потенциал Морзе используется для описания взаимодействия С-Ti, а взаимодействие С-С описано потенциалом AIREBO.При этом рассматривается два набора параметров потенциала Морзе, по-разному воспроизводящих взаимодействие в системе. Разница в параметрах потенциалов возникает при их подгонке под решение определенных задач. Морфология рассмотренного материала выбрана исходя из задачи дальнейшего моделирования композитного материала на основе листов графена и наночастиц металла. Показано, что один из применяемых наборов параметров Морзе хорошо воспроизводит осаждение графена на металлическую подложку, однако не может воспроизводить взаимодействие графена и наночастицы. Анализ производится на основе вычисления энергии взаимодействия в системе и структурных состояний. Наилучшее отображение реального физического взаимодействия наночастицы титана и графена позволяет получить потенциал Терсоффа, однако второй набор параметров потенциала Морзе также может быть использован для проведения подобных расчетов. Взаимодействие наночастицы титана и графена является достаточно сильным и наночастица титана легко прикрепляется к чешуйке графена, после чего «обволакивается» чешуйкой графена.","PeriodicalId":491041,"journal":{"name":"Fundamentalʹnye problemy sovremennogo materialovedeniâ","volume":"99 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fundamentalʹnye problemy sovremennogo materialovedeniâ","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.25712/astu.1811-1416.2023.02.007","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Анализ применимости межатомных потенциалов для решения задач различной направленности представляет большой интерес, поскольку именно межатомный потенциал определяет результат моделирования. В данной работе методом молекулярной динамики исследуется взаимодействие листа графена с наночастицей титана с использованием двух разных межатомных потенциалов – потенциала Морзе и потенциала Терсоффа. Следует отметить, что потенциал Терсоффа описывает все три вида взаимодействий в системе (С-С, С-Ti, Ti-Ti), а потенциал Морзе используется для описания взаимодействия С-Ti, а взаимодействие С-С описано потенциалом AIREBO.При этом рассматривается два набора параметров потенциала Морзе, по-разному воспроизводящих взаимодействие в системе. Разница в параметрах потенциалов возникает при их подгонке под решение определенных задач. Морфология рассмотренного материала выбрана исходя из задачи дальнейшего моделирования композитного материала на основе листов графена и наночастиц металла. Показано, что один из применяемых наборов параметров Морзе хорошо воспроизводит осаждение графена на металлическую подложку, однако не может воспроизводить взаимодействие графена и наночастицы. Анализ производится на основе вычисления энергии взаимодействия в системе и структурных состояний. Наилучшее отображение реального физического взаимодействия наночастицы титана и графена позволяет получить потенциал Терсоффа, однако второй набор параметров потенциала Морзе также может быть использован для проведения подобных расчетов. Взаимодействие наночастицы титана и графена является достаточно сильным и наночастица титана легко прикрепляется к чешуйке графена, после чего «обволакивается» чешуйкой графена.