Separation and quantitation of valacyclovir enantiomers using stability‐indicating chiral liquid chromatography method with a chiral stationary phase of amylose tris‐(3,5‐dimethylphenylcarbamate)

IF 1.3 Q4 CHEMISTRY, ANALYTICAL SEPARATION SCIENCE PLUS Pub Date : 2023-09-21 DOI:10.1002/sscp.202300145
Niroja Vadagam, Sharath Babu Haridasyam, Muvvala Venkatanarayana, Narasimha S. Lakka, Sanjeeva R. Chinnakadoori
{"title":"Separation and quantitation of valacyclovir enantiomers using stability‐indicating chiral liquid chromatography method with a chiral stationary phase of amylose tris‐(3,5‐dimethylphenylcarbamate)","authors":"Niroja Vadagam, Sharath Babu Haridasyam, Muvvala Venkatanarayana, Narasimha S. Lakka, Sanjeeva R. Chinnakadoori","doi":"10.1002/sscp.202300145","DOIUrl":null,"url":null,"abstract":"Abstract The present research developed and validated a new stability‐indicating technique for the stereo‐selectively enantiomers of the antiviral nucleoside analog Valacyclovir hydrochloride (VAL). The chiral separation was performed using normal‐phase high‐performance liquid chromatography (HPLC) with a chiral stationary phase consisting of amylose tris(3‐chloro‐5‐methylphenylcarbamate) and a mobile phase of “ n ‐hexane, methanol, ethanol, and diethylamine”, flow rate of 0.60 mL/min, column temperature of 30°C, injection volume of 10‐μL, detection wavelength of 254‐nm, and run time of 25‐min. The enantiomers (S‐enantiomer, L‐isomer, R‐enantiomer, and D‐isomer) of Valacyclovir were separated with a resolution of 4.8 and no interference. The validation parameters verified for the proposed method, linearity in a range of 0.1002–24.3486 μg/mL (0.02–4.86%) with a regression coefficient of 0.999, and the accuracy was determined with excellent recoveries ranging from 94.38%–109.97%. The concentrations established for the detection limit and quantitation limit were 0.01% and 0.02%, respectively. The forced degradation experiments were used to assess the stability‐indicating qualities. D‐Valacyclovir impurity was successfully evaluated in release and stability samples of VAL in drug substance and tablet dosage forms using the proposed normal phase chiral HPLC approach.","PeriodicalId":21639,"journal":{"name":"SEPARATION SCIENCE PLUS","volume":"2015 1","pages":"0"},"PeriodicalIF":1.3000,"publicationDate":"2023-09-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"SEPARATION SCIENCE PLUS","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/sscp.202300145","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 2

Abstract

Abstract The present research developed and validated a new stability‐indicating technique for the stereo‐selectively enantiomers of the antiviral nucleoside analog Valacyclovir hydrochloride (VAL). The chiral separation was performed using normal‐phase high‐performance liquid chromatography (HPLC) with a chiral stationary phase consisting of amylose tris(3‐chloro‐5‐methylphenylcarbamate) and a mobile phase of “ n ‐hexane, methanol, ethanol, and diethylamine”, flow rate of 0.60 mL/min, column temperature of 30°C, injection volume of 10‐μL, detection wavelength of 254‐nm, and run time of 25‐min. The enantiomers (S‐enantiomer, L‐isomer, R‐enantiomer, and D‐isomer) of Valacyclovir were separated with a resolution of 4.8 and no interference. The validation parameters verified for the proposed method, linearity in a range of 0.1002–24.3486 μg/mL (0.02–4.86%) with a regression coefficient of 0.999, and the accuracy was determined with excellent recoveries ranging from 94.38%–109.97%. The concentrations established for the detection limit and quantitation limit were 0.01% and 0.02%, respectively. The forced degradation experiments were used to assess the stability‐indicating qualities. D‐Valacyclovir impurity was successfully evaluated in release and stability samples of VAL in drug substance and tablet dosage forms using the proposed normal phase chiral HPLC approach.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
以直链淀粉三(3,5 -二甲基苯基氨基甲酸酯)为手性固定相,稳定性指示手性液相色谱法分离和定量伐昔洛韦对映体
摘要:本研究开发并验证了一种新的抗病毒核苷类似物盐酸伐昔洛韦(Valacyclovir hydrochloride, VAL)立体选择性对映体的稳定性指示技术。采用正相高效液相色谱法进行手性分离,手性固定相为直链淀粉三(3‐氯‐5‐甲基苯基氨基甲酸酯),流动相为正己烷-甲醇-乙醇-二乙胺,流速为0.60 mL/min,柱温为30℃,进样量为10 μL,检测波长为254 μ nm,运行时间为25 min。Valacyclovir的对映体(S -对映体、L -异构体、R -对映体和D -异构体)在4.8的分辨率下无干扰分离。结果表明,该方法的线性范围为0.1002 ~ 24.3486 μg/mL(0.02 ~ 4.86%),回归系数为0.999,准确度为94.38% ~ 109.97%。建立的检测限和定量限浓度分别为0.01%和0.02%。采用强制降解实验来评估稳定性-指示质量。采用所提出的正相手性高效液相色谱法对D‐Valacyclovir杂质在原药和片剂剂型VAL中的释放度和稳定性进行了评价。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
SEPARATION SCIENCE PLUS
SEPARATION SCIENCE PLUS CHEMISTRY, ANALYTICAL-
CiteScore
1.90
自引率
9.10%
发文量
111
期刊最新文献
Analytical quality by design‐based thin‐layer chromatography method development and validation for assay and content uniformity testing of the anti‐neoplastic drug Axitinib in tablet formulation Dispersive solid‐phase extraction for the determination of organochlorine pesticides in fruit juice samples using iron‐doped zinc oxide nanoparticles supported with silica as a sorbent Application of sol‐gel universal sorbent coated fabric phase sorptive extraction membranes in combination with high‐performance liquid chromatography‐ultraviolet detection to monitor endocrine‐disrupting chemicals in milk and environmental water samples New validated liquid chromatography‐tandem mass spectrometry method for the determination of Dacomitinib in human plasma and its application to a pharmacokinetic study Simultaneous estimation of andrographolide, apigenin, apocynin, and gallic acid by high‐performance thin layer chromatography method with Greenness quality by design approach
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1