Design, Synthesis, Spectral Analysis, Drug Likeness Prediction, and Molecular Docking Investigations of New Naphtho[2,1-b]Furan Encompassing Pyrimidines as Potential Antimicrobial Agents
{"title":"Design, Synthesis, Spectral Analysis, Drug Likeness Prediction, and Molecular Docking Investigations of New Naphtho[2,1-b]Furan Encompassing Pyrimidines as Potential Antimicrobial Agents","authors":"","doi":"10.1080/10406638.2023.2272012","DOIUrl":null,"url":null,"abstract":"<div><div>In view of the extremely important biological and medicinal properties of napthofurans, the synthesis of these heterocycles has fascinated the interest of medicinal and organic chemists. Keeping this in mind, we herein report the synthesis and antimicrobial evaluation of 4-<em>N</em>-aryl-naphtho[2,1-<em>b</em>]furo[3,2-<em>d</em>] pyrimidines <strong>5 (a–l)</strong>. Structures of these synthesized compounds were confirmed by spectral analysis like IR, NMR, and Mass spectrometry. The <em>in vitro</em> antimicrobial activities were reported for all the compounds <strong>5 (a–l)</strong>. The compounds <strong>5e</strong> and <strong>5f</strong> exhibited excellent antibacterial, antifungal, and antidermatophytic activities against tested pathogens at MIC 3.125, and 3.125 µg/mL, respectively. Furthermore, molecular docking studies of these compounds against <em>S. aureus</em> tyrosyl-tRNA synthetase (<strong>PDB ID: 1JIJ</strong>), <em>S. aureus Gyrase</em> (<strong>PDB ID: 2XCT</strong>), and SARS-CoV-2 Omicron (<strong>PDB ID: 7TOB</strong>), revealed the potential binding mode of the ligands to the site of the appropriate targets. Finally, drug-likeness and structure-activity relationship studies were also disclosed.</div></div>","PeriodicalId":20303,"journal":{"name":"Polycyclic Aromatic Compounds","volume":"44 9","pages":"Pages 6042-6063"},"PeriodicalIF":2.4000,"publicationDate":"2024-10-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Polycyclic Aromatic Compounds","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/org/science/article/pii/S1040663823020997","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, ORGANIC","Score":null,"Total":0}
引用次数: 0
Abstract
In view of the extremely important biological and medicinal properties of napthofurans, the synthesis of these heterocycles has fascinated the interest of medicinal and organic chemists. Keeping this in mind, we herein report the synthesis and antimicrobial evaluation of 4-N-aryl-naphtho[2,1-b]furo[3,2-d] pyrimidines 5 (a–l). Structures of these synthesized compounds were confirmed by spectral analysis like IR, NMR, and Mass spectrometry. The in vitro antimicrobial activities were reported for all the compounds 5 (a–l). The compounds 5e and 5f exhibited excellent antibacterial, antifungal, and antidermatophytic activities against tested pathogens at MIC 3.125, and 3.125 µg/mL, respectively. Furthermore, molecular docking studies of these compounds against S. aureus tyrosyl-tRNA synthetase (PDB ID: 1JIJ), S. aureus Gyrase (PDB ID: 2XCT), and SARS-CoV-2 Omicron (PDB ID: 7TOB), revealed the potential binding mode of the ligands to the site of the appropriate targets. Finally, drug-likeness and structure-activity relationship studies were also disclosed.
期刊介绍:
The purpose of Polycyclic Aromatic Compounds is to provide an international and interdisciplinary forum for all aspects of research related to polycyclic aromatic compounds (PAC). Topics range from fundamental research in chemistry (including synthetic and theoretical chemistry) and physics (including astrophysics), as well as thermodynamics, spectroscopy, analytical methods, and biology to applied studies in environmental science, biochemistry, toxicology, and industry. Polycyclic Aromatic Compounds has an outstanding Editorial Board and offers a rapid and efficient peer review process, as well as a flexible open access policy.