{"title":"Changes in hydrogen states after interactions between hydrogen and stress-induced martensite transformation for Ni–Ti superelastic alloy","authors":"Ryosuke Hayashi, Ken’ichi Yokoyama","doi":"10.1080/09500839.2023.2266466","DOIUrl":null,"url":null,"abstract":"Changes in hydrogen states after dynamic interactions between hydrogen and a stress-induced martensite transformation have been investigated for Ni–Ti superelastic alloy. After homogenised hydrogen concentration by aging, the interactions change the hydrogen thermal desorption behaviour. Hydrogen in a solid solution probably changes to hydrogen trapped in damage regions induced by the interactions, as reported previously. With time after the interactions, the amount of hydrogen desorbed at low temperatures (200–400°C) markedly increases, clearly indicating that hydrogen states further change from the states immediately after the interactions. In cyclic tensile deformation in the stress plateau region caused by stress-induced martensite and reverse transformations, the number of cycles to fracture substantially increases with time after the interactions. The present results indicate that hydrogen states further change to a nominally interacting state after the interactions despite the absence of dynamic structural changes and a hydrogen concentration gradient, thereby suppressing hydrogen embrittlement related to the martensite transformation of the alloy.","PeriodicalId":19860,"journal":{"name":"Philosophical Magazine Letters","volume":"7 1","pages":"0"},"PeriodicalIF":1.2000,"publicationDate":"2023-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Philosophical Magazine Letters","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/09500839.2023.2266466","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Changes in hydrogen states after dynamic interactions between hydrogen and a stress-induced martensite transformation have been investigated for Ni–Ti superelastic alloy. After homogenised hydrogen concentration by aging, the interactions change the hydrogen thermal desorption behaviour. Hydrogen in a solid solution probably changes to hydrogen trapped in damage regions induced by the interactions, as reported previously. With time after the interactions, the amount of hydrogen desorbed at low temperatures (200–400°C) markedly increases, clearly indicating that hydrogen states further change from the states immediately after the interactions. In cyclic tensile deformation in the stress plateau region caused by stress-induced martensite and reverse transformations, the number of cycles to fracture substantially increases with time after the interactions. The present results indicate that hydrogen states further change to a nominally interacting state after the interactions despite the absence of dynamic structural changes and a hydrogen concentration gradient, thereby suppressing hydrogen embrittlement related to the martensite transformation of the alloy.
期刊介绍:
Philosophical Magazine Letters is the rapid communications part of the highly respected Philosophical Magazine, which was first published in 1798. Its Editors consider for publication short and timely contributions in the field of condensed matter describing original results, theories and concepts relating to the structure and properties of crystalline materials, ceramics, polymers, glasses, amorphous films, composites and soft matter. Articles emphasizing experimental, theoretical and modelling studies on solids, especially those that interpret behaviour on a microscopic, atomic or electronic scale, are particularly appropriate.
Manuscripts are considered on the strict condition that they have been submitted only to Philosophical Magazine Letters , that they have not been published already, and that they are not under consideration for publication elsewhere.