Chaotic Behavior of Lorenz-Based Chemical System under the Influence of Fractals

IF 2.9 2区 化学 Q2 CHEMISTRY, MULTIDISCIPLINARY Match-Communications in Mathematical and in Computer Chemistry Pub Date : 2023-10-01 DOI:10.46793/match.91-2.307m
Muhammad Marwan, Anda Xiong, Maoan Han, Ramla Khan
{"title":"Chaotic Behavior of Lorenz-Based Chemical System under the Influence of Fractals","authors":"Muhammad Marwan, Anda Xiong, Maoan Han, Ramla Khan","doi":"10.46793/match.91-2.307m","DOIUrl":null,"url":null,"abstract":"This research examines a chaotic chemical reaction system based on the variation of the Lorenz system. This study demonstrates that although the first phase portraits of the chemical models under consideration and the Lorenz models are comparable, they do not fully follow all the features of the Lorenz system. Questions about the existence of fractals in systems based on chemical reactions are addressed in the current work. Moreover, we have worked on the hidden information inside in each wings of a chaotic system generated through fractal process, for the first time, with the aid of basin for fractals. Additionally, we looked closely at the dynamics of the model across the basin, which revealed additional details regarding the existence of hidden and cyclic attractors inside each wing. We also produced multi-wings for system (1) in the current study, demonstrating in a general manner that the number of cyclic attractors increase in a direct relation to the number of wings. Moreover, Julia approach is used to accomplish the work of multi-wings, whereas for searching cyclic attractors inside each extra wing, we have used fifteen million initial conditions and compiled them as a basin set. The data generated in this work is also provided within this paper for the ease of readers.","PeriodicalId":51115,"journal":{"name":"Match-Communications in Mathematical and in Computer Chemistry","volume":"23 1","pages":"0"},"PeriodicalIF":2.9000,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Match-Communications in Mathematical and in Computer Chemistry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.46793/match.91-2.307m","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

This research examines a chaotic chemical reaction system based on the variation of the Lorenz system. This study demonstrates that although the first phase portraits of the chemical models under consideration and the Lorenz models are comparable, they do not fully follow all the features of the Lorenz system. Questions about the existence of fractals in systems based on chemical reactions are addressed in the current work. Moreover, we have worked on the hidden information inside in each wings of a chaotic system generated through fractal process, for the first time, with the aid of basin for fractals. Additionally, we looked closely at the dynamics of the model across the basin, which revealed additional details regarding the existence of hidden and cyclic attractors inside each wing. We also produced multi-wings for system (1) in the current study, demonstrating in a general manner that the number of cyclic attractors increase in a direct relation to the number of wings. Moreover, Julia approach is used to accomplish the work of multi-wings, whereas for searching cyclic attractors inside each extra wing, we have used fifteen million initial conditions and compiled them as a basin set. The data generated in this work is also provided within this paper for the ease of readers.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
分形影响下洛伦兹化学体系的混沌行为
本文研究了一种基于洛伦兹系统变异的混沌化学反应系统。本研究表明,尽管所考虑的化学模型的第一相肖像和洛伦兹模型具有可比性,但它们并没有完全遵循洛伦兹系统的所有特征。在目前的工作中,讨论了基于化学反应的系统中分形存在的问题。此外,我们还首次利用分形盆地对分形过程产生的混沌系统的各翼内隐藏信息进行了研究。此外,我们仔细观察了整个盆地模型的动力学,揭示了每个翼内存在隐藏和循环吸引子的更多细节。在本研究中,我们还为系统(1)制作了多翼,以一般方式证明循环吸引子的数量增加与翼的数量直接相关。此外,我们使用Julia方法来完成多翼的工作,而为了在每个额外翼内搜索循环吸引子,我们使用了1500万个初始条件并将它们编译为一个盆地集。为了方便读者,本文也提供了这项工作中产生的数据。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
4.40
自引率
26.90%
发文量
71
审稿时长
2 months
期刊介绍: MATCH Communications in Mathematical and in Computer Chemistry publishes papers of original research as well as reviews on chemically important mathematical results and non-routine applications of mathematical techniques to chemical problems. A paper acceptable for publication must contain non-trivial mathematics or communicate non-routine computer-based procedures AND have a clear connection to chemistry. Papers are published without any processing or publication charge.
期刊最新文献
ChemCNet: An Explainable Integrated Model for Intelligent Analyzing Chemistry Synthesis Reactions Asymptotic Distribution of Degree-Based Topological Indices Note on the Minimum Bond Incident Degree Indices of k-Cyclic Graphs Sombor Index of Hypergraphs The ABC Index Conundrum's Complete Solution
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1