Ein multiples interaktives Kontinuumsmodell (MINC) zur Simulation des reaktiven Stofftransports in einem Bergbaufolgegebiet: Eine Fallstudie über das Ibbenbürener Westfeld

IF 2.1 4区 环境科学与生态学 Q3 WATER RESOURCES Mine Water and the Environment Pub Date : 2023-06-01 DOI:10.1007/s10230-023-00938-2
Diego Bedoya-Gonzalez, Timo Kessler, Thomas Rinder, Sylke Hilberg, Zsuzsanna Szabó-Krausz, Maria-Theresia Schafmeister
{"title":"Ein multiples interaktives Kontinuumsmodell (MINC) zur Simulation des reaktiven Stofftransports in einem Bergbaufolgegebiet: Eine Fallstudie über das Ibbenbürener Westfeld","authors":"Diego Bedoya-Gonzalez, Timo Kessler, Thomas Rinder, Sylke Hilberg, Zsuzsanna Szabó-Krausz, Maria-Theresia Schafmeister","doi":"10.1007/s10230-023-00938-2","DOIUrl":null,"url":null,"abstract":"Abstract We tested the suitability of the multiple interactive continua approach (MINC) to simulate reactive mass transport in a disturbed post-mining coal zone. To the authors’ knowledge, this approach has not been employed in such mining settings despite its relative success in other environmental fields. To this end, TOUGHREACT software was used to set up a MINC model of the unsaturated overburden of the Ibbenbüren Westfield. With it, we examined and evaluated water–rock interactions in both the fractured and porous continua as the main driver of elevated hydrogen, iron, sulfate, and chloride concentrations in the coal mine groundwater. Long and seasonal geochemical signatures were obtained by formulating and applying a five-stage modelling process that depicts the mining history of the area. The simulation results agree well with the concentrations and discharge trends measured in the mine drainage. Oxygen and meteoric water flow through the fractured continuum, leading to a high and steady release of hydrogen, iron, and sulfate ions derived from pyrite oxidation in the matrix continua closest to the fractures. Likewise, high chloride concentrations resulted from the mixing and gradual release of relatively immobile solutes in the matrix as they interacted with percolating water in the fracture. In both cases, the use of a multiple continua approach was essential to resolve sharp gradients for advection and faster kinetic reactions, while reducing the model’s dependence on block size for diffusive transport at the fracture–matrix interface. The model further allows for the calculation and analysis of solute exchange and transport in the unsaturated overburden resulting from rebound and imbibition processes, something pioneering when compared to other models in the field.","PeriodicalId":18571,"journal":{"name":"Mine Water and the Environment","volume":"26 1","pages":"0"},"PeriodicalIF":2.1000,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mine Water and the Environment","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s10230-023-00938-2","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"WATER RESOURCES","Score":null,"Total":0}
引用次数: 0

Abstract

Abstract We tested the suitability of the multiple interactive continua approach (MINC) to simulate reactive mass transport in a disturbed post-mining coal zone. To the authors’ knowledge, this approach has not been employed in such mining settings despite its relative success in other environmental fields. To this end, TOUGHREACT software was used to set up a MINC model of the unsaturated overburden of the Ibbenbüren Westfield. With it, we examined and evaluated water–rock interactions in both the fractured and porous continua as the main driver of elevated hydrogen, iron, sulfate, and chloride concentrations in the coal mine groundwater. Long and seasonal geochemical signatures were obtained by formulating and applying a five-stage modelling process that depicts the mining history of the area. The simulation results agree well with the concentrations and discharge trends measured in the mine drainage. Oxygen and meteoric water flow through the fractured continuum, leading to a high and steady release of hydrogen, iron, and sulfate ions derived from pyrite oxidation in the matrix continua closest to the fractures. Likewise, high chloride concentrations resulted from the mixing and gradual release of relatively immobile solutes in the matrix as they interacted with percolating water in the fracture. In both cases, the use of a multiple continua approach was essential to resolve sharp gradients for advection and faster kinetic reactions, while reducing the model’s dependence on block size for diffusive transport at the fracture–matrix interface. The model further allows for the calculation and analysis of solute exchange and transport in the unsaturated overburden resulting from rebound and imbibition processes, something pioneering when compared to other models in the field.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
多层连续模式模型(MINC)用于模拟煤矿地区的被动物料运输:本文针对西博尼亚半岛的研究
摘要本文测试了多重交互连续体方法(MINC)在扰动采煤后区域反应性物质输运模拟中的适用性。据作者所知,尽管这种方法在其他环境领域取得了相对的成功,但尚未在这种采矿环境中采用。为此,利用TOUGHREACT软件建立了ibbenb西油田非饱和覆盖层的MINC模型。有了它,我们检查和评估了裂缝和多孔连续体中的水岩相互作用,作为煤矿地下水中氢、铁、硫酸盐和氯化物浓度升高的主要驱动因素。通过制定和应用描述该地区采矿历史的五阶段建模过程,获得了长期和季节性的地球化学特征。模拟结果与实测的矿井水浓度和排放趋势吻合较好。氧气和大气水流经断裂连续体,导致最靠近裂缝的基质连续体中黄铁矿氧化产生的氢、铁和硫酸盐离子大量稳定释放。同样,高氯化物浓度是由于基质中相对不流动的溶质与裂缝中的渗透水相互作用时混合并逐渐释放而产生的。在这两种情况下,使用多重连续方法对于解决平流的急剧梯度和更快的动力学反应是必不可少的,同时减少了模型对裂缝-基质界面扩散输运块大小的依赖。该模型进一步允许计算和分析非饱和覆盖层中由反弹和吸胀过程引起的溶质交换和运移,与该领域的其他模型相比,这是一个开创性的成果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
5.00
自引率
14.30%
发文量
62
审稿时长
3 months
期刊介绍: Mine Water and the Environment welcomes original contributions that address either technical questions or practical issues related to the evaluation, prediction, prevention, or control of water problems at mining operations or their impact on the environment. The journal and its audience is interdisciplinary. Manuscripts should convey new technical information and be of potential interest to researchers and/or practitioners in this field. Laboratory and field experiments, modelling efforts, studies of relevant field sites, technical evaluations of new technology, and engineering applications are all appropriate.
期刊最新文献
Hydrogeochemical Mechanisms and Hydraulic Connection of Groundwaters in the Dongming Opencast Coal Mine, Hailar, Inner Mongolia Pollution of Surface Water Close to an Artisanal Gold Mining Area: the Case of Macalder Mine, Kenya Un Estudio de la Contaminación del Agua Subterránea Estratificada en una Zona Minera y el Proceso de Falla del Compuesto de Sellado Datos e Índices de Teledetección como Apoyo a la Gestión del Agua: Un Enfoque Integral Post-minería para la Extracción de Lignito en Grecia Irrigation Should be Explored as a Sustainable Management Solution to the Acid Mine Drainage Legacy of the Witwatersrand Goldfields
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1