Large-Amplitude Quasi-Stationary Rossby Wave Events in ERA5 and the CESM2: Features, Precursors, and Model Biases in Northern Hemisphere Winter

IF 3 3区 地球科学 Q2 METEOROLOGY & ATMOSPHERIC SCIENCES Journal of the Atmospheric Sciences Pub Date : 2023-08-01 DOI:10.1175/jas-d-22-0042.1
Cuiyi Fei, Rachel H. White
{"title":"Large-Amplitude Quasi-Stationary Rossby Wave Events in ERA5 and the CESM2: Features, Precursors, and Model Biases in Northern Hemisphere Winter","authors":"Cuiyi Fei, Rachel H. White","doi":"10.1175/jas-d-22-0042.1","DOIUrl":null,"url":null,"abstract":"Abstract High-amplitude quasi-stationary Rossby waves (QSWs) have been connected to extreme weather events. By identifying particularly high-amplitude QSW events (QWEs) over Europe and North America, we study their characteristics in ERA5 data and in ensemble simulations from the CESM2 general circulation model. The CESM2 reproduces the overall statistics of QWEs, with ERA5 results within the ensemble spread. The ensemble spread is large, indicating a strong influence of internal variability. Composites of meridional wind anomalies for QWEs show a phase preference in both ERA5 and CESM2, resembling the climatological wave pattern. This is partly due to the definition of QSWs; with the day-of-year climatological meridional wind removed when identifying QSWs, the phase preference remains, albeit with a weaker signal. Significant tropical Pacific precipitation anomalies are seen 5–15 days before observed QWEs; the location of these anomalies is broadly reproduced in CESM2, but the magnitude is substantially underestimated and the time scale is biased. We find a narrowed and strengthened jet stream over the Pacific at the early stage of European QWEs, which may create enhanced waveguidability; this signal is generally reproduced in the models. Overall, the CESM2 can simulate QWEs; differences between the model ensemble mean and the reanalysis could result from model bias or internal variability, although biases are not reduced in CESM2 simulations forced with observed SSTs.","PeriodicalId":17231,"journal":{"name":"Journal of the Atmospheric Sciences","volume":"31 1","pages":"0"},"PeriodicalIF":3.0000,"publicationDate":"2023-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the Atmospheric Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1175/jas-d-22-0042.1","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"METEOROLOGY & ATMOSPHERIC SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Abstract High-amplitude quasi-stationary Rossby waves (QSWs) have been connected to extreme weather events. By identifying particularly high-amplitude QSW events (QWEs) over Europe and North America, we study their characteristics in ERA5 data and in ensemble simulations from the CESM2 general circulation model. The CESM2 reproduces the overall statistics of QWEs, with ERA5 results within the ensemble spread. The ensemble spread is large, indicating a strong influence of internal variability. Composites of meridional wind anomalies for QWEs show a phase preference in both ERA5 and CESM2, resembling the climatological wave pattern. This is partly due to the definition of QSWs; with the day-of-year climatological meridional wind removed when identifying QSWs, the phase preference remains, albeit with a weaker signal. Significant tropical Pacific precipitation anomalies are seen 5–15 days before observed QWEs; the location of these anomalies is broadly reproduced in CESM2, but the magnitude is substantially underestimated and the time scale is biased. We find a narrowed and strengthened jet stream over the Pacific at the early stage of European QWEs, which may create enhanced waveguidability; this signal is generally reproduced in the models. Overall, the CESM2 can simulate QWEs; differences between the model ensemble mean and the reanalysis could result from model bias or internal variability, although biases are not reduced in CESM2 simulations forced with observed SSTs.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
ERA5和CESM2的大振幅准平稳Rossby波事件:北半球冬季的特征、前兆和模式偏差
高振幅准平稳罗斯比波(QSWs)与极端天气事件有关。通过识别欧洲和北美的特别高振幅QSW事件(QWEs),我们研究了它们在ERA5资料和CESM2一般环流模式的集合模拟中的特征。CESM2再现了QWEs的总体统计数据,ERA5的结果在集合范围内。总体扩散很大,表明内部变率的影响很大。经向风异常复合数据在ERA5和CESM2上均表现出相偏好,与气候波型相似。这部分是由于qsw的定义;在识别qsw时,除去日经向风的影响,相位偏好仍然存在,但信号较弱。热带太平洋降水异常在QWEs观测前5 ~ 15天出现;这些异常的位置在CESM2中得到了广泛的再现,但其幅度被大大低估,时间尺度也存在偏差。我们发现在欧洲QWEs早期太平洋上空有一个变窄和增强的急流,这可能会增强波导性;该信号通常在模型中重现。总体而言,CESM2可以模拟QWEs;模式集合平均值与再分析之间的差异可能是模式偏差或内部变率造成的,尽管在观测到的海温强迫的CESM2模拟中,偏差并未减少。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of the Atmospheric Sciences
Journal of the Atmospheric Sciences 地学-气象与大气科学
CiteScore
0.20
自引率
22.60%
发文量
196
审稿时长
3-6 weeks
期刊介绍: The Journal of the Atmospheric Sciences (JAS) publishes basic research related to the physics, dynamics, and chemistry of the atmosphere of Earth and other planets, with emphasis on the quantitative and deductive aspects of the subject. The links provide detailed information for readers, authors, reviewers, and those who wish to submit a manuscript for consideration.
期刊最新文献
Synchronous Papillary and Follicular Carcinoma with Scalp and Nodal Metastasis: A case report with review of literature. Characteristics of Turbulence Intermittency, Fine Structures, and Flux Correction in the Taklimakan Desert Tropospheric thermal forcing of the stratosphere through quasi-balanced dynamics Asymmetry of the Distribution of Vertical Velocities of the Extratropical Atmosphere in Theory, Models and Reanalysis A new pathway for tornadogenesis exposed by numerical simulations of supercells in turbulent environments
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1