Daniel Berdejo, Diego García-Gonzalo, Nadia Oulahal, Rositsa Denkova-Kostova, Vesela Shopska, Georgi Kostov, Pascal Degraeve, Rafael Pagan
{"title":"Minimal Processing Technologies for Production and Preservation of Tailor-Made Foods","authors":"Daniel Berdejo, Diego García-Gonzalo, Nadia Oulahal, Rositsa Denkova-Kostova, Vesela Shopska, Georgi Kostov, Pascal Degraeve, Rafael Pagan","doi":"10.17113/ftb.61.03.23.8013","DOIUrl":null,"url":null,"abstract":"Tailor-made foods, also known as foods with programmable properties, are specialised systems with unique composition prepared by different methods, using the known mechanisms of action of their bioactive ingredients. The development of tailor-made foods involves the evaluation of individual components, including bioactive substances derived from waste products of other productions, such as essential oils. These components are evaluated both individually and in combination within food compositions to achieve specific functionalities. This review focuses on the application of minimal processing technologies for the production and preservation of tailor-made foods. It examines a range of approaches, including traditional and emerging technologies, as well as novel ingredients such as biomolecules from various sources and microorganisms. These approaches are combined according to the principles of hurdle technology to achieve effective synergistic effects that enhance food safety and extend the shelf life of tailor-made foods, while maintaining their functional properties.","PeriodicalId":12400,"journal":{"name":"Food Technology and Biotechnology","volume":null,"pages":null},"PeriodicalIF":2.3000,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Food Technology and Biotechnology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.17113/ftb.61.03.23.8013","RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Tailor-made foods, also known as foods with programmable properties, are specialised systems with unique composition prepared by different methods, using the known mechanisms of action of their bioactive ingredients. The development of tailor-made foods involves the evaluation of individual components, including bioactive substances derived from waste products of other productions, such as essential oils. These components are evaluated both individually and in combination within food compositions to achieve specific functionalities. This review focuses on the application of minimal processing technologies for the production and preservation of tailor-made foods. It examines a range of approaches, including traditional and emerging technologies, as well as novel ingredients such as biomolecules from various sources and microorganisms. These approaches are combined according to the principles of hurdle technology to achieve effective synergistic effects that enhance food safety and extend the shelf life of tailor-made foods, while maintaining their functional properties.
期刊介绍:
Food Technology and Biotechnology (FTB) is a diamond open access, peer-reviewed international quarterly scientific journal that publishes papers covering a wide range of topics, including molecular biology, genetic engineering, biochemistry, microbiology, biochemical engineering and biotechnological processing, food science, analysis of food ingredients and final products, food processing and technology, oenology and waste treatment.
The Journal is published by the University of Zagreb, Faculty of Food Technology and Biotechnology, Croatia. It is an official journal of Croatian Society of Biotechnology and Slovenian Microbiological Society, financed by the Croatian Ministry of Science and Education, and supported by the Croatian Academy of Sciences and Arts.