Fabian Hinterer, Simon Hubmer, Prashin Jethwa, Kirk M. Soodhalter, Glenn van de Ven, Ronny Ramlau
{"title":"A Projected Nesterov–Kaczmarz Approach to Stellar Population-Kinematic Distribution Reconstruction in Extragalactic Archaeology","authors":"Fabian Hinterer, Simon Hubmer, Prashin Jethwa, Kirk M. Soodhalter, Glenn van de Ven, Ronny Ramlau","doi":"10.1137/22m1503002","DOIUrl":null,"url":null,"abstract":"In this paper, we consider the problem of reconstructing a galaxy’s stellar population-kinematic distribution function from optical integral field unit measurements. These quantities are connected via a high-dimensional integral equation. To solve this problem, we propose a projected Nesterov–Kaczmarz reconstruction method, which efficiently leverages the problem structure and incorporates physical prior information such as smoothness and nonnegativity constraints. To test the performance of our reconstruction approach, we apply it to a dataset simulated from a known ground truth density, and validate it by comparing our recoveries to those obtained by the widely used pPXF software.","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2023-02-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1137/22m1503002","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 2
Abstract
In this paper, we consider the problem of reconstructing a galaxy’s stellar population-kinematic distribution function from optical integral field unit measurements. These quantities are connected via a high-dimensional integral equation. To solve this problem, we propose a projected Nesterov–Kaczmarz reconstruction method, which efficiently leverages the problem structure and incorporates physical prior information such as smoothness and nonnegativity constraints. To test the performance of our reconstruction approach, we apply it to a dataset simulated from a known ground truth density, and validate it by comparing our recoveries to those obtained by the widely used pPXF software.