Jie Gao, Qiming Fu, Jiacheng Sun, Yunzhe Wang, Youbing Xia, You Lu, Hongjie Wu, Jianping Chen
{"title":"QLDTI: A Novel Reinforcement Learning-based Prediction Model for Drug-Target Interaction","authors":"Jie Gao, Qiming Fu, Jiacheng Sun, Yunzhe Wang, Youbing Xia, You Lu, Hongjie Wu, Jianping Chen","doi":"10.2174/0115748936264731230928112936","DOIUrl":null,"url":null,"abstract":"Background: Predicting drug-target interaction (DTI) plays a crucial role in drug research and development. More and more researchers pay attention to the problem of developing more powerful prediction methods. Traditional DTI prediction methods are basically realized by biochemical experiments, which are time-consuming, risky, and costly. Nowadays, DTI prediction is often solved by using a single information source and a single model, or by combining some models, but the prediction results are still not accurate enough. Objective: The study aimed to utilize existing data and machine learning models to integrate heterogeneous data sources and different models, further improving the accuracy of DTI prediction. Methods: This paper has proposed a novel prediction method based on reinforcement learning, called QLDTI (predicting drug-target interaction based on Q-learning), which can be mainly divided into two parts: data fusion and model fusion. Firstly, it fuses the drug and target similarity matrices calculated by different calculation methods through Q-learning. Secondly, the new similarity matrix is inputted into five models, NRLMF, CMF, BLM-NII, NetLapRLS, and WNN-GIP, for further training. Then, all sub-model weights are continuously optimized again by Q-learning, which can be used to linearly weight all sub-model prediction results to output the final prediction result. Results: QLDTI achieved AUC accuracy of 99.04%, 99.12%, 98.28%, and 98.35% on E, NR, IC, and GPCR datasets, respectively. Compared to the existing five models NRLMF, CMF, BLM-NII, NetLapRLS, and WNN-GIP, the QLDTI method has achieved better results on four benchmark datasets of E, NR, IC, and GPCR. Conclusion: Data fusion and model fusion have been proven effective for DTI prediction, further improving the prediction accuracy of DTI.","PeriodicalId":10801,"journal":{"name":"Current Bioinformatics","volume":null,"pages":null},"PeriodicalIF":2.4000,"publicationDate":"2023-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Bioinformatics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2174/0115748936264731230928112936","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
Background: Predicting drug-target interaction (DTI) plays a crucial role in drug research and development. More and more researchers pay attention to the problem of developing more powerful prediction methods. Traditional DTI prediction methods are basically realized by biochemical experiments, which are time-consuming, risky, and costly. Nowadays, DTI prediction is often solved by using a single information source and a single model, or by combining some models, but the prediction results are still not accurate enough. Objective: The study aimed to utilize existing data and machine learning models to integrate heterogeneous data sources and different models, further improving the accuracy of DTI prediction. Methods: This paper has proposed a novel prediction method based on reinforcement learning, called QLDTI (predicting drug-target interaction based on Q-learning), which can be mainly divided into two parts: data fusion and model fusion. Firstly, it fuses the drug and target similarity matrices calculated by different calculation methods through Q-learning. Secondly, the new similarity matrix is inputted into five models, NRLMF, CMF, BLM-NII, NetLapRLS, and WNN-GIP, for further training. Then, all sub-model weights are continuously optimized again by Q-learning, which can be used to linearly weight all sub-model prediction results to output the final prediction result. Results: QLDTI achieved AUC accuracy of 99.04%, 99.12%, 98.28%, and 98.35% on E, NR, IC, and GPCR datasets, respectively. Compared to the existing five models NRLMF, CMF, BLM-NII, NetLapRLS, and WNN-GIP, the QLDTI method has achieved better results on four benchmark datasets of E, NR, IC, and GPCR. Conclusion: Data fusion and model fusion have been proven effective for DTI prediction, further improving the prediction accuracy of DTI.
期刊介绍:
Current Bioinformatics aims to publish all the latest and outstanding developments in bioinformatics. Each issue contains a series of timely, in-depth/mini-reviews, research papers and guest edited thematic issues written by leaders in the field, covering a wide range of the integration of biology with computer and information science.
The journal focuses on advances in computational molecular/structural biology, encompassing areas such as computing in biomedicine and genomics, computational proteomics and systems biology, and metabolic pathway engineering. Developments in these fields have direct implications on key issues related to health care, medicine, genetic disorders, development of agricultural products, renewable energy, environmental protection, etc.