Modified Exponential Ratio-Type Estimator of Population Mean in Stratified Sampling using Calibration Approach

None Neha Garg, None Housila P. Singh, None Menakshi Pachori
{"title":"Modified Exponential Ratio-Type Estimator of Population Mean in Stratified Sampling using Calibration Approach","authors":"None Neha Garg, None Housila P. Singh, None Menakshi Pachori","doi":"10.56801/jmasm.v23.i1.3","DOIUrl":null,"url":null,"abstract":"In this paper, the problem of estimation of finite population mean in stratified random sampling is considered. Two improved exponential logarithmic type calibration estimators for finite population mean have been proposed for stratified random sampling when auxiliary information related to variable under study is available for each stratum. To judge the performance of the proposed estimators, a simulation study has been carried out in R-software using two datasets, one real and another one artificial generated population. The proposed estimators have also been compared with the estimators developed by Bahl and Tuteja [1] and Singh [17] in case of stratified random sampling.","PeriodicalId":47201,"journal":{"name":"Journal of Modern Applied Statistical Methods","volume":"2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Modern Applied Statistical Methods","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.56801/jmasm.v23.i1.3","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, the problem of estimation of finite population mean in stratified random sampling is considered. Two improved exponential logarithmic type calibration estimators for finite population mean have been proposed for stratified random sampling when auxiliary information related to variable under study is available for each stratum. To judge the performance of the proposed estimators, a simulation study has been carried out in R-software using two datasets, one real and another one artificial generated population. The proposed estimators have also been compared with the estimators developed by Bahl and Tuteja [1] and Singh [17] in case of stratified random sampling.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用校正方法估计分层抽样总体均值的修正指数比率型估计
研究了分层随机抽样中有限总体均值的估计问题。提出了两种改进的指数对数型有限总体均值校正估计方法,用于分层随机抽样中各层均可获得与研究变量相关的辅助信息。为了判断所提出的估计器的性能,在r软件中使用两个数据集进行了模拟研究,一个是真实的,另一个是人工生成的人口。在分层随机抽样的情况下,还将所提出的估计量与Bahl和Tuteja[1]和Singh[17]开发的估计量进行了比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
0.50
自引率
0.00%
发文量
5
期刊介绍: The Journal of Modern Applied Statistical Methods is an independent, peer-reviewed, open access journal designed to provide an outlet for the scholarly works of applied nonparametric or parametric statisticians, data analysts, researchers, classical or modern psychometricians, and quantitative or qualitative methodologists/evaluators.
期刊最新文献
The Performance of the Maximum Likelihood Estimator for the Bell Distribution for Count Data Proportionality Adjusted Ratio-Type Calibration Estimators of Population Mean Under Stratified Sampling Moment Properties of Record Values from Rayleigh Lomax Distribution and Characterization Smoothing of Estimators of Population mean using Calibration Technique with Sample Errors Bayesian Estimation and Prediction for Inverse Power Maxwell Distribution with Applications to Tax Revenue and Health Care Data
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1