{"title":"Licochalcone A Inhibits Proliferation and Metastasis of Colon Cancer by Regulating miR-1270/ADAM9/Akt/NF-κB axis","authors":"Changhai Pan, Hongjin Chen, Bolin Yang","doi":"10.18502/ijph.v52i9.13578","DOIUrl":null,"url":null,"abstract":"Background: We aimed to explor the therapeutic effect and molecular mechanism of licochalcone A (LCA) on colon cancer.
 Methods: This study was carried out in 2020-2021 in Nanjing Tongren Hospital, China. Colon cancer HCT116 cells were treated with different concentrations of LCA. Cell counting kit-8, colony formation and flow cytometry assays were used to analyze cell viability, proliferation and apoptosis. Wound healing and transwell experiments were used to measure cell migration and invasion ability. The expression of ADAM9 and apoptosis-related proteins in different LCA treatment groups was detected by western blot. HCT116 cells were transfected with ADAM9 small interfering RNAs (siRNAs) or overexpression vectors. The database screened the upstream miRNA targeting ADAM9 and predicted the targeted binding site between miR-1270 and ADAM9, which was verified by a dual-luciferase reporter assay. Rescue experiments were performed to confirm the effects of the miR-1270/ADAM9 axis on cell proliferation and metastasis.
 Results: LCA decreased cell growth (P<0.05), migration (P<0.05), and invasion (P<0.05) of colon cancer cells and inhibited ADAM9 expression in a dose-dependent manner. LCA affected the functions of colon cancer cells by negatively regulating the expression of ADAM9. MiR-1270, increased by LCA, targeted and suppressed ADAM9 expression significantly (P<0.001). ADAM9 overexpression restrained miR-1270 mimic and LCA-induced changes in cell proliferation, migration, and invasion, and promoted apoptosis in HCT116 cells significantly (P<0.01). LCA and miR-1270 mimic inactivated the Akt/NF-κB pathway, while ADAM9 overexpression rescued it.
 Conclusion: LCA exhibited antitumor efficacy in HCT116 cells by inhibiting the Akt/NF-κB signaling pathway by regulating the miR-1270/ADAM9 axis.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2023-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18502/ijph.v52i9.13578","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Background: We aimed to explor the therapeutic effect and molecular mechanism of licochalcone A (LCA) on colon cancer.
Methods: This study was carried out in 2020-2021 in Nanjing Tongren Hospital, China. Colon cancer HCT116 cells were treated with different concentrations of LCA. Cell counting kit-8, colony formation and flow cytometry assays were used to analyze cell viability, proliferation and apoptosis. Wound healing and transwell experiments were used to measure cell migration and invasion ability. The expression of ADAM9 and apoptosis-related proteins in different LCA treatment groups was detected by western blot. HCT116 cells were transfected with ADAM9 small interfering RNAs (siRNAs) or overexpression vectors. The database screened the upstream miRNA targeting ADAM9 and predicted the targeted binding site between miR-1270 and ADAM9, which was verified by a dual-luciferase reporter assay. Rescue experiments were performed to confirm the effects of the miR-1270/ADAM9 axis on cell proliferation and metastasis.
Results: LCA decreased cell growth (P<0.05), migration (P<0.05), and invasion (P<0.05) of colon cancer cells and inhibited ADAM9 expression in a dose-dependent manner. LCA affected the functions of colon cancer cells by negatively regulating the expression of ADAM9. MiR-1270, increased by LCA, targeted and suppressed ADAM9 expression significantly (P<0.001). ADAM9 overexpression restrained miR-1270 mimic and LCA-induced changes in cell proliferation, migration, and invasion, and promoted apoptosis in HCT116 cells significantly (P<0.01). LCA and miR-1270 mimic inactivated the Akt/NF-κB pathway, while ADAM9 overexpression rescued it.
Conclusion: LCA exhibited antitumor efficacy in HCT116 cells by inhibiting the Akt/NF-κB signaling pathway by regulating the miR-1270/ADAM9 axis.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.